精英家教网 > 高中数学 > 题目详情

(本小题13分)已知函数的图象相交于分别是的图象在两点的切线,分别是轴的交点.
(1)求的取值范围;
(2)设为点的横坐标,当时,写出为自变量的函数式,并求其定义域和值域;
(3)试比较的大小,并说明理由(是坐标原点).

解:(Ⅰ)由方程.①
依题意,该方程有两个正实根,故解得
(Ⅱ)由,求得切线的方程为
,并令,得
是方程①的两实根,且,故
是关于的减函数,所以的取值范围是
是关于的增函数,定义域为,所以值域为
(Ⅲ)当时,由(Ⅱ)可知
类似可得
由①可知
从而
时,有相同的结果
所以

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,证明在区间上是增函数;
(2)若在区间上是单调函数,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x0,使得f(x)= x0,求函数f(x)的解析表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知定义在上的函数的图象如右图所示

(Ⅰ)写出函数的周期;
(Ⅱ) 确定函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
⑴求的值;
⑵判断函数在定义域内的单调性并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,二次函数)的图象与反比例函数图象相交于点,已知点的坐标为,点在第三象限内,且的面积为为坐标原点)

① 求实数的值;
② 求二次函数)的解析式;
③ 设抛物线与轴的另一个交点为点为线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数,且
(1)求的值;
(2)判定的奇偶性;
(3)判断上的单调性,并给予证明。

查看答案和解析>>

同步练习册答案