【题目】如图,已知椭圆
(a>b>0)的离心率
,过点
和
的直线与原点的距离为
.
![]()
(1)求椭圆的方程.
(2)已知定点
,若直线
与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
【答案】(1)
;(2)存在
,使得以
为直径的圆过点
.
【解析】
试题分析:(1)由
两点的坐标可得直线
方程,根据点到线的距离公式可得
间的关系式,再结合离心率及
可解得
的值.(2)将直线方程与椭圆方程联立消去
整理为关于
的一元二次方程.根据有2个交点可知其判别式大于0得
的范围.由上式可得两根之和,两根之积.以
为直径的圆过点
时
,根据直线垂直斜率相乘等于
可得
的值.若满足前边判别式大于0得的
的范围说明存在,否则说明不存在.
试题解析:解:解析:(1)直线
方程为:
.
依题意
解得 ![]()
∴ 椭圆方程为
.
(2)假若存在这样的
值,由
得![]()
.
∴
①
设
,
、
,
,则
②
而
.
要使以
为直径的圆过点
,当且仅当
时,则
,即
∴
③
将②式代入③整理解得
.经验证,
,使①成立.
综上可知,存在
,使得以
为直径的圆过点
.
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=1,an+an+1=(
)n , Sn=a1+4a2+42a3+…+4n﹣1an , 类比课本中推导等比数列前项和公式的方法,可求得5Sn﹣4nan= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
经过不同的三点
在第三象限),线段
的中点在直线
上.
![]()
(Ⅰ)求椭圆
的方程及点
的坐标;
(Ⅱ)设点
是椭圆
上的动点(异于点
且直线
分别交直线
于
两点,问
是否为定值?若是,求出定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4
4:坐标系与参数方程
在平面直角坐标系
中,圆C的参数方程为
,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
,A,B两点的极坐标分别为
.
(Ⅰ)求圆C的普通方程和直线
的直角坐标方程;
(Ⅱ)点P是圆C上任一点,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取
名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
| 10 | 0.25 |
| 25 |
|
|
|
|
| 2 | 0.05 |
合计 |
| 1 |
![]()
(1)求出表中
及图中
的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体
中,
在线段
上运动且不与
,
重合,给出下列结论:
①
;
②
平面
;
③二面角
的大小随
点的运动而变化;
④三棱锥
在平面
上的投影的面积与在平面
上的投影的面积之比随
点的运动而变化;
其中正确的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
分别为双曲线
的左、右顶点,双曲线的实轴长为
,焦点到渐近线的距离为
.
(1)求双曲线的方程;
(2)已知直线
与双曲线的右支交于
两点,且在双曲线的右支上存在点
,使
,求
的值及点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com