精英家教网 > 高中数学 > 题目详情
9.定积分$\int_{-1}^1{x^2}$dx的值为$\frac{2}{3}$.

分析 根据定积分的性质,然后运用微积分基本定理计算定积分即可.

解答 解:$\int_{-1}^1{x^2}$dx=2${∫}_{0}^{1}$x2dx=2×$\frac{1}{3}$x3${丨}_{0}^{1}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题主要考查了定积分,运用微积分基本定理计算定积分的关键是找到被积函数的原函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设数列{an}的前n项和为Sn,已知a1=2,Sn+1=an+1an+Sn+1,则S60=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设x∈R,则“a=b”是“f(x)=(x+a)|x+b|为奇函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知{an}是公差不为0的等差数列,{bn}为等比数列,满足a1=3,b1=1,a2=b2,3a5=b3,若对于每一个正整数n,均有an=a1+logabn,则常数a=$\root{3}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为贯彻落实教育部6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,培养拼搏意识和团队精神,普及足球知识和技能,市教体局决定举行春季校园足球联赛.为迎接此次联赛,甲中学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录入如表:(设ξ为随机变量)
身高(cm)168174175176178182185188
人数12435131
(1)请计算这20名学生的身高的中位数、众数,并补充完成下面的茎叶图;
(2)身高为185cm和188cm的四名学生分别记为A,B,C,D,现从这四名学生选2名担任正副门将,请利用列举法列出所有可能情况,并求学生A入选门将的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.$f(x)=\left\{\begin{array}{l}-\frac{3}{x},x<0\\ 1+{log_3}x,\;\;\;x>0.\end{array}\right.$则 f(f(-1))等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数x,y满足$\left\{\begin{array}{l}{y≥1}\\{y≤2x-1}\\{x+y≤m}\end{array}\right.$,如果目标函数z=y-x的最大值为1,则实数m等于(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=-1-3i,则下列说法正确的是(  )
A.z的虚部为3i
B.z的共轭复数为1-3i
C.|z|=4
D.z在复平面内对应的点在第三象限内

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点M作直线MA,MB交椭圆于A,B两点,且点A,B关于原点对称,设MA,MB的斜率分别为k1,k2,k1•k2=-$\frac{2}{3}$,又椭圆的一个焦点与抛物线y2=4x的焦点重合.
(1)求椭圆C的方程;
(2)若直线l过椭圆的右焦点F2,且绕F2旋转,l与椭圆C相交于P,Q两点,求△F1PQ的面积的最大值(F1为椭圆C的左焦点).

查看答案和解析>>

同步练习册答案