精英家教网 > 高中数学 > 题目详情
13.已知点A是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,F1,F2为椭圆的左、右焦点,点P为△AF1F2的内心,若S${\;}_{△A{F}_{1}{F}_{2}}$=4S${\;}_{△{PF}_{1}{F}_{2}}$,则椭圆的离心率为$\frac{1}{3}$.

分析 设△AF1F2的内切圆半径为r,则S${\;}_{△A{F}_{1}{F}_{2}}$=$\frac{1}{2}$r×(|AF1|+|AF2|+|F1F2|)=(a+c)r,S${\;}_{△{PF}_{1}{F}_{2}}$=$\frac{1}{2}r|{F}_{1}{F}_{2}|$=cr,由此能求出椭圆的离心率.

解答 解:∵A是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,F1,F2为椭圆的左、右焦点,
点P为△AF1F2的内心,S${\;}_{△A{F}_{1}{F}_{2}}$=4S${\;}_{△{PF}_{1}{F}_{2}}$,
∴设△AF1F2的内切圆半径为r,
则S${\;}_{△A{F}_{1}{F}_{2}}$=$\frac{1}{2}$r×(|AF1|+|AF2|+|F1F2|)=(a+c)r,S${\;}_{△{PF}_{1}{F}_{2}}$=$\frac{1}{2}r|{F}_{1}{F}_{2}|$=cr,
∴a+c=4c,∴a=3c,
∴椭圆的离心率为e=$\frac{c}{a}=\frac{c}{3c}=\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查椭圆的离心率的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.将函数$y=sinx+\sqrt{3}cosx(x∈R)$的图象向左平移n(n>0)个长度单位后,所得到的图象关于原点对称,则n的最小值是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.己知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆C2:x2+y2=r2(r>0),已知圆C2的直径是椭圆C1焦距长的$\sqrt{2}$倍,且圆C2的面积为4π,椭圆C1的离心率为$\frac{\sqrt{6}}{3}$,过椭圆C1的上顶点A作一条斜率为k(k>0)的直线l与椭圆C1的另一个交点是B,与圆C2相交于点E,F.
(1)求椭圆C1的方程;
(2)当|AB|•|EF|=3$\sqrt{7}$时,求直线l的方程,并求△F2AB的面积(其中F2为椭圆C1的右焦点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图是根据某中学为地震灾区捐款的情况而制作的统计图,已知该校在校学生3000人,根据统计图计算该校共捐款37770元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在直三棱柱ABC-A1B1C1中,已知AB=AC,M,N,P分别为BC,CC1,BB1的中点.求证:
(1)平面AMP⊥平面BB1C1C;
(2)A1N∥平面AMP.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在数列{an}中,若a1=3,an+1=an+n(n≥1),分别写出该数列的第2~5项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,圆C1:(x-1)2+y2=2,圆C2:(x-m)2+(y+m)2=m2.圆C2上存在点P满足:过点P向圆C1作两条切线PA,PB,切点为A,B,△ABP的面积为1,则正数m的取值范围是[1,$3+2\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是公差为整数的等差数列,前n项和为Sn,且a1+a5+2=0,2S1,3S2,8S3成等比数列,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前10项和为-$\frac{10}{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且Sn=3an-1.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{n+1}{{a}_{n}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案