精英家教网 > 高中数学 > 题目详情
已知x≥1,y≥1,求证:x2y+xy2+1≤x2y2+x+y.
考点:二维形式的柯西不等式
专题:证明题,不等式
分析:左边-右边,利用x≥1,y≥1,即可得出结论.
解答: 证明:左边-右边=(y-y2)x+(y2-1)x-y+1=(1-y)[yx2-(1+y)x+1]…(4分)
=(1-y)(xy-1)(x-1),…(6分)
∵x≥1,y≥1,
∴1-y≤0,xy-1≥0,x-1≥0.    …(8分)
从而左边-右边≤0,
∴x2y+xy2+1≤x2y2+x+y.    …(10分)
点评:本题考查不等式的证明,考查作差法,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知PA⊥平面ABC,AB⊥BC,若PA=2,AB=1,BC=
3

(1)求直线PC与平面ABC所成角的大小;
(2)求证:平面PAB⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-2x+5,求证:当
5
2
≤a≤
23
4
时,f(x)在(-2,
1
6
)上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=2,a1+a2+a3=12,且an-2an+1+an+2=0,求数列{an}的前20项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校计划在一块直角三角形ABC的空地上修建一个占地面积为S的矩形ADEF健身场地,如图,A=
π
2
,∠ABC=
π
6
,点D在AC上,点E在斜边BC上,且点F在AB上,AC=40米,设AD=x米.
(1)试用x表示S,并求S的取值范围;
(2)若矩形健身场地面积不小于144
3
平方米,求x的取值范围;
(3)设矩形健身场地每平方米的造价为
37
S
,再把矩形ADEF以外(阴影部分)铺上草坪,每平方米的造价为
12
S
,求总造价T关于S的函数T=f(S);并求出AD的长使总造价T最低(不要求求出最低造价).

查看答案和解析>>

科目:高中数学 来源: 题型:

为了研究高中学生中性别与对乡村音乐态度(喜欢和不喜欢两种态度)的关系,运用2×2列联表进行独立性检验,经计算χ2=8.026,则所得到的统计学结论是:有
 
的把握认为“性别与喜欢乡村音乐有关系”
附:P(χ2≥k0 0.100 0.050 0.025 0.010 0.001
k0 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

“x>2”是“x2-4>0”的
 
条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一个填空).

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2-bx-1≥0的解集为[-
1
2
,-
1
3
],则不等式x2-bx-a<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(
π
2
+x)+cos(π-x)=
1
2
,则sin2x=
 

查看答案和解析>>

同步练习册答案