精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinωx(A>0,ω>0)的部分图象如图所示.P、Q分别是图象上的一个最高点和最低点,R为图象与x轴的交点,且四边形OQRP为矩形.
(Ⅰ)求f(x)的解析式;
(Ⅱ)将y=f(x)的图象向右平移
1
2
个单位长度后,得到函数y=g(x)的图象.已知α∈(
3
2
5
2
)
,g(α)=
3
3
,求f(α)的值.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换
专题:计算题,三角函数的图像与性质
分析:(Ⅰ)设函数f(x)的最小正周期为T,则P(
T
4
3
)、Q (
3T
4
-
3
),由四边形为矩形得
.
OP
.
OQ
=
3
16
T2-3=0,故T=4,ω=
π
2
,即可得f(x)=
3
sin
π
2
x.  
(Ⅱ)y=g(x)=f(x-
1
2
)=
3
sin(
π
2
x-
π
4
)可得sin(
π
2
α-
π
4
)=
1
3
,又α∈(
3
2
5
2
)
,可求得cos(
π
2
α-
π
4
)=-
2
2
3
,从而可求f(α)的值.
解答: 解:(Ⅰ)设函数f(x)的最小正周期为T,则P(
T
4
3
)、Q (
3T
4
-
3
),(2分)
∵四边形OQRP为矩形.∴OP⊥OQ,∴
.
OP
.
OQ
=
3
16
T2-3=0,∴T=4.           (5分)
∴ω=
T
=
4
=
π
2
,∴f(x)=
3
sin
π
2
x.                                 (7分)
(Ⅱ)y=g(x)=f(x-
1
2
)=
3
sin(
π
2
x-
π
4
),(8分)
∵g(α)=
3
sin(
π
2
α-
π
4
)=
3
3
,∴sin(
π
2
α-
π
4
)=
1
3
.                          (10分)
α∈(
3
2
5
2
)
,∴
π
2
α-
π
4
∈(
π
2
,π),∴cos(
π
2
α-
π
4
)=-
2
2
3
.               (12分)
∴f(α)=
3
sin
π
2
α=
3
sin[(
π
2
α-
π
4
)+
π
4
]=
3
[sin(
π
2
α-
π
4
)cos
π
4
+cos(
π
2
α-
π
4
)sin
π
4
]
=
3
[
1
3
×
2
2
+(-
2
2
3
2
2
]=
6
-4
3
6
.                                  (14分)
点评:本题主要考察了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过△ABC所在平面α外一点P,作PO⊥α,垂足为O,若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的(  )
A、垂心B、重心C、内心D、外心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+2mx-m+12=0的两个根都大于2,则实数m的取值范围是(  )
A、(-
16
3
,+∞)
B、(-∞,-4]
C、(-
16
3
,-4]
D、(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若1+
2
i是关于x的实系数方程x2-2x+c=0的一个复数根,则c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在R上定义运算?:x?y=x(2-y),已知关于x的不等式(x+1)?(x+1-a)>0的解集是{x|b<x<1}.
(1)x求实数a,b
(2)对于任意的t∈A,不等式x2+(t-2)x+1>0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A=30°,C=45°,b=8,则a等于(  )
A、4
B、4
2
C、4
3
D、4(
6
-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>0,n>0,且2m,
5
2
,3n成等差数列,则
2
m
+
3
n
的最小值为(  )
A、
5
2
B、5
C、
15
2
D、15

查看答案和解析>>

科目:高中数学 来源: 题型:

设 a=
e4
16
,b=
e5
25
,c=
e6
36
,则a,b,c的大小关系为(  )
A、a>b>c
B、b>a>c
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
满足|
a
|=1
,且
a
a
-
b
的夹角为30°,则|
b
|
的取值范围是
 

查看答案和解析>>

同步练习册答案