精英家教网 > 高中数学 > 题目详情

设全集U ={1,2,3,4,5},集合A={2,3,4},集合B={3,5},则=( )

A.{5} B.{1,2,3,4,5} C.{1,3,5} D.

 

A

【解析】

试题分析:依题意可得.所以.故选A.

考点:1.集合的概念.2.集合的运算.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014-2015学年重庆市高二10月定时练习文科数学试卷(解析版) 题型:解答题

(13分)已知椭圆C:的两焦点为,长轴两顶点为.

(1)是椭圆上一点,且,求的面积;

(2)过椭圆的左焦点作一条倾斜角为45°的直线与椭圆交于两点,求弦长.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省高三高考压轴理科数学试卷(解析版) 题型:填空题

设常数.若的二项展开式中项的系数为-15,则_______.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省高三高考压轴文科数学试卷(解析版) 题型:填空题

某校有高中学生2000人,其中高三学生800人,高一学生的人数与高二学生人数之比为,为了解高中学生身体素质,采用分层抽样,共抽取一个100人的样本,则样本中高一学生人数为__ ____人.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省高三高考压轴文科数学试卷(解析版) 题型:选择题

已知直线经过坐标原点,且与圆相切,切点在第四象限,则直线的方程为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省福州市高三5月综合练习理科数学试卷(解析版) 题型:解答题

已知椭圆C:( )的离心率为,点(1,)在椭圆C上.

(1)求椭圆C的方程;

(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点

(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省福州市高三5月综合练习理科数学试卷(解析版) 题型:填空题

在△ABC中,AB=2,D为BC的中点,若=,则AC=_____ __.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省福州市高三5月综合练习文科数学试卷(解析版) 题型:解答题

已知是一个公差大于0的等差数列,且满足.

(1)求数列的通项公式;

(2)若数列和数列满足等式:(n为正整数)求数列的前n项和.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省高考考前模拟文科数学试卷(解析版) 题型:解答题

数列的前项和为,且,数列为等差数列,且.

(1)求数列的通项公式;

(2)若对任意的恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案