精英家教网 > 高中数学 > 题目详情
19.以AB为直径的半圆,|$\overrightarrow{AB}$|=2,O为圆心,C是$\widehat{AB}$上靠近点A的三等分点,F是$\widehat{AB}$上的某一点,若$\overrightarrow{AC}$∥$\overrightarrow{OF}$,则$\overrightarrow{AF}$•$\overrightarrow{BC}$=$-\frac{3}{2}$.

分析 可以点O为坐标原点,AB所在直线为x轴建立平面直角坐标系,并连接OC,根据条件可得出∠COA=∠FOB=60°,并且OC=OF=1,这样即可求出点A,B,C,F的坐标,进而得出向量$\overrightarrow{AF},\overrightarrow{BC}$的坐标,从而得出$\overrightarrow{AF}•\overrightarrow{BC}$的值.

解答 解:以O为原点,OB所在直线为x轴,
建立如图所示平面直角坐标系:
连接OC,据题意,∠COA=60°;
∴∠CAO=FOB=60°;
且OC=OF=1;
∴$A(-1,0),F(\frac{1}{2},\frac{\sqrt{3}}{2}),B(1,0),C(-\frac{1}{2},\frac{\sqrt{3}}{2})$;
∴$\overrightarrow{AF}=(\frac{3}{2},\frac{\sqrt{3}}{2}),\overrightarrow{BC}=(-\frac{3}{2},\frac{\sqrt{3}}{2})$;
∴$\overrightarrow{AF}•\overrightarrow{BC}=-\frac{9}{4}+\frac{3}{4}=-\frac{3}{2}$.
故答案为:$-\frac{3}{2}$.

点评 考查等弧所对的圆心角相等,通过建立平面直角坐标系,利用坐标解决向量问题的方法,以及根据点的坐标求向量坐标的方法,向量数量积的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数y=log3x与y=log${\;}_{\frac{1}{3}}$(9x)的图象(  )
A.关于直线x=1对称B.关于直线y=x对称
C.关于直线y=-1对称D.关于直线y=1对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且Sn=$\frac{{n}^{2}}{2}$+$\frac{3n}{2}$.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+2-an+$\frac{1}{{a}_{n+1}-{a}_{n}}$,且数列{bn}的前n项和为Tn,求证:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各式的值:
(1)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$+$\root{3}{0.125}$-($\sqrt{2}$-$\sqrt{3}$)0;                
(2)(log43+log83)•(log32+log92).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(0,2),B(4,6),$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$,其中t1、t2为实数;
(1)若点M在第二或第三象限,且t1=2,求t2的取值范围;
(2)求证:当t1=1时,不论t2为何值,A、B、M三点共线;
(3)若t1=a2,$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,且△ABM的面积为12,求a和t2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数为幂函数的是(  )
A.y=x2-1B.y=$\frac{2}{x}$C.y=$\frac{1}{{x}^{2}}$D.y=-x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.令a=0.20.1,b=log0.20.1,则有(  )
A.b>1>aB.a>1>bC.a>b>1D.1>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个几何体各个顶点或其外轮廓曲线都在某个球的球面上,那么称这个几何体内接于该球,已知球的体积为$\frac{32π}{3}$,那么下列可以内接于该球的几何体为(  )
A.底面半径为1,且体积为$\frac{4π}{3}$的圆锥B.底面积为1,高为$\sqrt{14}$的正四棱柱
C.棱长为3的正四面体D.棱长为3的正方体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义域为R的奇函数f(x)满足f(log2x)=$\frac{-x+a}{x+1}$.
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在定义域 R的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(3t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案