精英家教网 > 高中数学 > 题目详情
14.已知点A(0,2),B(4,6),$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$,其中t1、t2为实数;
(1)若点M在第二或第三象限,且t1=2,求t2的取值范围;
(2)求证:当t1=1时,不论t2为何值,A、B、M三点共线;
(3)若t1=a2,$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,且△ABM的面积为12,求a和t2的值.

分析 (1)由题设条件,得$\overrightarrow{OM}$=(4t2,2t1+4t2),又点M在第二象限或第三象限,列出不等式求出t2的取值范围;
(2)由平面向量的共线定理,得$\overrightarrow{AM}$=t2$\overrightarrow{AB}$,能证明A,B,M三点共线;
(3)由t1=a2表示出$\overrightarrow{OM}$、$\overrightarrow{AB}$,利用$\overrightarrow{OM}$⊥$\overrightarrow{AB}$求出t2=-$\frac{1}{4}$a2,再由S△ABM=12求出a的值和t2的值.

解答 解:(1)由A(0,2),B(4,6),
得$\overrightarrow{AB}$=(4,4),
∴$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$=(4t2,2t1+4t2),
又点M在第二象限或第三象限,
∴$\left\{\begin{array}{l}{{4t}_{2}<0}\\{{2t}_{1}+{4t}_{2}≠0}\end{array}\right.$,
又t1=2,
解得t2<0且t2≠-1,
∴t2的取值范围是(-∞,-1)∪(-1,0);
(2)证明:t1=1时,
$\overrightarrow{OM}$=t1$\overrightarrow{OA}$+t2$\overrightarrow{AB}$=$\overrightarrow{OA}$+t2$\overrightarrow{AB}$,
∴$\overrightarrow{OM}$-$\overrightarrow{OA}$=t2$\overrightarrow{AB}$,
即$\overrightarrow{AM}$=t2$\overrightarrow{AB}$,
∴不论t2为何值,A、B、M三点共线;
(3)∵当t1=a2时,$\overrightarrow{OM}$=(4t2,4t2+2a2),
又∵$\overrightarrow{AB}$=(4,4),$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,
∴4t2×4+(4t2+2a2)×4=0,
∴t2=-$\frac{1}{4}$a2
∴$\overrightarrow{OM}$=(-a2,a2);
又∵|$\overrightarrow{AB}$|=4$\sqrt{2}$,
点M到直线AB:x-y+2=0的距离为
d=$\frac{|{-a}^{2}{-a}^{2}+2|}{\sqrt{2}}$=$\sqrt{2}$|a2-1|;
∵S△ABM=12,
∴$\frac{1}{2}$|$\overrightarrow{AB}$|•d=$\frac{1}{2}$×4$\sqrt{2}$×$\sqrt{2}$|a2-1|=12,
解得a=±2,此时t2=-$\frac{1}{4}$a2=-1.

点评 本题主要考查两个向量坐标形式的运算,三点共线的条件,两个向量垂直的性质,点到直线的距离公式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列四个说法:
①若定义域和对应关系确定,则值域也就确定了;
②若函数的值域只含有一个元素,则定义域也只含有一个元素;
③若f(x)=5(x∈R),则f(π)=5一定成立;
④函数就是两个集合之间的对应关系.
其中正确说法的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.考察下列命题,在“___”处缺少一个条件,补上这个条件使其构成正确命题(其中l,m为直线,α,β为平面),则此条件为1?α.
$\left.\begin{array}{l}{m?α}\\{l∥m}\\{_____}\end{array}\right\}$⇒l∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x|x+m≥0},B={x|-2<x<4},全集∪=R,且(∁UA)∩B=∅,则m的取值范围是(  )
A.(-∞,2)B.[2,+∞)C.(2,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将一条5米长的绳子随机的切断为两段,则两段绳子都不短于1米的概率为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以AB为直径的半圆,|$\overrightarrow{AB}$|=2,O为圆心,C是$\widehat{AB}$上靠近点A的三等分点,F是$\widehat{AB}$上的某一点,若$\overrightarrow{AC}$∥$\overrightarrow{OF}$,则$\overrightarrow{AF}$•$\overrightarrow{BC}$=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数h(x)=4x2-kx-8在[5,20]上是减函数,则k的取值范围是(-∞,40].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等差数列8,5,2,…的前20项和是(  )
A.410B.-410C.49D.-49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax-a+1,(a>0且a≠1)恒过定点(2,2).
(1)求实数a;
(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;
(3)对于定义在(1,4]上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案