精英家教网 > 高中数学 > 题目详情
7.求下列各式的值:
(1)$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$+$\root{3}{0.125}$-($\sqrt{2}$-$\sqrt{3}$)0;                
(2)(log43+log83)•(log32+log92).

分析 (1)根据指数幂的运算性质计算即可,
(2)根据换底公式计算即可.

解答 解:(1)原式=$\frac{5}{2}$-$\frac{3}{2}$+$\frac{1}{2}$-1=$\frac{1}{2}$,
(2)原式=($\frac{lg3}{2lg2}$+$\frac{lg3}{3lg2}$)($\frac{lg2}{lg3}$+$\frac{lg2}{2lg3}$)=$\frac{5lg3}{6lg2}$•$\frac{3lg2}{2lg3}$=$\frac{5}{4}$

点评 本题考查了指数幂的运算性质和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知复数z=-2i+$\frac{1+4i}{i}$,则复数z的模为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在正方体ABCD-A1B1C1D1中,则异面直线AD1与A1C1所成角的余弦值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).
(1)若a=$\frac{1}{2}$,求一天中哪个时刻该市的空气污染指数最低;
(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x|x+m≥0},B={x|-2<x<4},全集∪=R,且(∁UA)∩B=∅,则m的取值范围是(  )
A.(-∞,2)B.[2,+∞)C.(2,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某产品在某零售摊位的零售价y(单位:元)与每天的销售量y(单位:个)的统计资料如表所示,
x16171819
y50344131
由表可得回归方程$\widehat{y}$=$\widehat{a}$-4x,据次模型预测零售价为20元时,每天销售量为(  )
A.26个B.27个C.28个D.29个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以AB为直径的半圆,|$\overrightarrow{AB}$|=2,O为圆心,C是$\widehat{AB}$上靠近点A的三等分点,F是$\widehat{AB}$上的某一点,若$\overrightarrow{AC}$∥$\overrightarrow{OF}$,则$\overrightarrow{AF}$•$\overrightarrow{BC}$=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{1}{\sqrt{x-2}}$的定义域为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的偶函数满足f(x-1)=f(x+1),且在x∈[-1,0]时,f(x)=($\frac{1}{2}$)x-1.若关于x的方程f(x)-loga(x+1)=0(a>1)在x∈(-1,3]上恰有3个不同的实数根,则实数a的取值范围为(2,4).

查看答案和解析>>

同步练习册答案