精英家教网 > 高中数学 > 题目详情
已知△ABC的三内角为A,B,C,
m
=(-1,
3
).
n
=(cosA,sinA).且
m
n
=1,
1+sin2B
cos2B-sin2B
=-3.
(1)求角A;
(2)若AC边的长为
15
,求△ABC的面积S.
考点:正弦定理,三角函数中的恒等变换应用
专题:解三角形
分析:(1)根据向量的数量积公式,即可求出A的大小.
(2)求出B的三角函数值,利用正弦定理和三角形的面积公式即可得到结论.
解答: 解:(1)∵
m
=(-1,
3
).
n
=(cosA,sinA).且
m
n
=1,
3
sinA-cosA=1,
即2(
3
2
sinA-
1
2
cosA)=1,
∴2sin(A-
π
6
)=1,
即sin(A-
π
6
)=
1
2

在三角形中A-
π
6
=
π
6
),即A=
π
3

(2)∵
1+sin2B
cos2B-sin2B
=
(cosB+sinB)2
(cosB+sinB)(cosB-sinB)
=
cosB+sinB
cosB-sinB
=-3

∴sinB=2cosB,解得sinB=
2
5
5
,cosB=
5
5

由正弦定理得
AC
sinB
=
BC
sinA

15
2
5
5
=
BC
3
2
,解得BC=
15
4

sinC=sin(π-A-B)=sin(A+B)=sinAcosB+cosAsinB=
3
2
×
5
5
+
1
2
×
2
5
5
=
5
(
3
+2)
10

∴△ABC的面积S=
1
2
AC•BC•
sinC=
1
2
×
15
×
5
(
3
+2)
10
×
15
4
=
15(2
3
+3)
16
点评:本题主要考查正弦定理和三角形面积的计算,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

化简下列式子:
(1)(
2xy2
3x3y5
)4×(
x3y9
2y10
)2

(2)
4x-5y-5
(x2y2)-2
×
3x5y6
2-2x-2y

(3)
5p5q-5
3q-4
×(
5p6q4
3p5
)-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,
3
),
b
=(sinx,cosx),且函数f(x)=
a
b
(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值及取得最大值时自变量x的集合;
(3)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
2m
-
y2
m-1
=1表示焦点在y轴上的椭圆;命题q:双曲线
y2
5
-
x2
m
=1的离心率e∈(1,2).
若命题p、q满足:p∧q为假,p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),若y=
f(x)
x
在(0,+∞)上为增函数,则称f(x) 为“一阶比增函数”.
(1)若f(x)=ax2+ax是“一阶比增函数”,求实数a的取值范围;
(2)若f(x)是“一阶比增函数”,当x2>x1>0时,试比较f(x1)+f(x2)与f(x1+x2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3-
1
2
(a+2)x2+(a+2)x-a-1,g(x)=
(exf(x))′
ex
,其中a>0.
(1)讨论f(x)的单调性;
(2)设曲线y=g(x)在点(m,g(m)),(n,g(n))处的切线都过点(0,2).证明:当m≠n时,g′(m)≠g′(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

计算由曲线y=9-x2与直线y=x+7围成的封闭区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=cos(2x-
π
6
)图象的一条对称轴是x=
12

②在同一坐标系中,函数y=sinx与y=lgx的交点个数为3个;
③将函数y=sin(2x+
π
3
)的图象向右平移
π
3
个单位长度可得到函数y=sin2x的图象;
④存在实数x,使得等式sinx+cosx=
3
2
成立;
其中正确的命题为
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx-cos(x+
π
6
)的值域为
 

查看答案和解析>>

同步练习册答案