精英家教网 > 高中数学 > 题目详情
函数f(x)=1+2(lgx)2的递减区间是
 
考点:复合函数的单调性
专题:函数的性质及应用
分析:设t=lgx,利用换元法结合复合函数单调性之间的关系即可得到结论.
解答: 解:设t=lgx,
则函数等价为y=g(t)=1+2t2
∵t=lgx为增函数,
∴要求f(x)的递减区间,
即求出y=g(t)=1+2t2的递减区间,
即t≤0,
则lgx≤0,解得0<x≤1,
故函数f(x)=1+2(lgx)2的递减区间是(0,1],
故答案为:(0,1]
点评:本题主要考查函数单调性的求解,根据复合函数单调性之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直线l截圆x2+y2-2y=0所得弦AB的中点是(-
1
2
3
2
),则直线l的方程为
 
,|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
A
4
n
=40
C
5
n
,设f(x)=(x-
1
3x
n
(1)求n的值;
(2)f(x)的展开式中的哪几项是有理项(回答项数即可);
(3)求f(x)的展开式中系数最大的项和系数最小的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosx-(1-2sin2x)(sin4x-cos4x).
(1)求f(x)的值域;
(2)若x∈[0,π],求方程f(x)=1的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1,离心率e=
2
2
,焦点在x2+y2=1上,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图由若干个相同的小立方体组成的几何体的俯视图,其中小立方体中的数字表示相应位置的小立方体的个数,则该几何体的左视图为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=kx+b过原点的充要条件是b=0.
 
(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(x2+ax+b)的图象在x=0处的切线方程为y=3,其中有e为自然对数的底数.
(1)求a,b的值;
(2)当-2<x<t时,证明f(t)>
13
e2

(3)对于定义域为D的函数y=g(x)若存在区间[m,n]⊆D时,使得x∈[m,n]时,y=g(x)的值域是[m,n].则称[m,n]是该函数y=g(x)的“保值区间”.设h(x)=f(x)+(x-2)ex,x∈(1,+∞),问函数y=h(x)是否存在“保值区间”?若存在,求出一个“保值区间”,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式mx2+mx+1>0对任意x∈R恒成立;命题q:函数f(x)=x3+mx2+3x+2存在单调递减区间;若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案