精英家教网 > 高中数学 > 题目详情
9.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=ex-1,则f(2016)+f(-2015)=(  )
A.1-eB.e-1C.-1-eD.e+1

分析 根据图象的平移可知y=f(x)的图象关于(0,0)点对称,可得函数为奇函数,由题意可知当x≥0时,函数为周期为2的周期函数,可得f(2016)+f(-2015)=f(0)-f(1),求解即可.

解答 解:∵y=f(x-1)的图象关于(1,0)点对称,
∴y=f(x)的图象关于(0,0)点对称,
∴函数为奇函数,
∵当x≥0时恒有f(x+2)=f(x),当x∈[0,2)时,f(x)=ex-1,
∴f(2016)+f(-2015)
=f(2016)-f(2015)
=f(0)-f(1)
=0-(e-1)
=1-e,
故选A.

点评 本题主要考查了函数图象的平移,奇函数的性质和函数的周期性.难点是对知识的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.sin240°+sin220°+sin40°•sin20°的值为(  )
A.$\frac{3}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}}\right.$,则z=x-3y的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,数列{$\frac{{S}_{n}}{n}$}是首项为0,公差为$\frac{1}{2}$的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{15}$•(-2)${\;}^{{a}_{n}}$(n∈N*),对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求证:数列{dk}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中真命题的个数是(  )
①若命题p为真,命题?q为真,则命题p且q为真;
②命题“若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$”的逆命题是真命题;
③命题“?x∈(0,+∞),x3+x-3>2”的否定是“?x∉(0,+∞),x3+x-3≤2.
A.0个B.1个C.2个D.3 个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π),它们的图象有一个横坐标为$\frac{π}{3}$的交点,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的各项均为正数,{an}的前n项和${S_n}=\frac{1}{4}{({{a_n}+1})^2}$,n∈N*
(1)求证:数列{an}为等差数列;
(2)等比数列{bn}的各项均为正数,${b_n}{b_{n+1}}≥{S_n}^2$,n∈N*,且存在整数k≥2,使得${b_k}{b_{k+1}}={S_k}^2$.
(i)求数列{bn}公比q的最小值(用k表示);
(ii)当n≥2时,${b_n}∈{N^*}$,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.太原五中是一所有着百年历史的名校,图1是某一阶段来我校参观学习的外校人数统计茎叶图,第1次到第14次参观学习人数依次记为A1,A2,…,A14,图2是统计茎叶图中人数在一定范围内的一个算法流程图,那么算法流程图输出的结果是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}中,若a1=0,ai=k2(i∈N*,2k≤i<2k+1,k=1,2,3,…),则满足ai+a2i≥100的i的最小值为
128.

查看答案和解析>>

同步练习册答案