分析 (I)利用等差数列的通项公式可得Sn=$\frac{n(n-1)}{2}$,利用当n≥2时,an=Sn-Sn-1即可得出.
(II)由bn=$\frac{4}{15}$•(-2)${\;}^{{a}_{n}}$=$\frac{4}{15}$•(-2)n-1,可得:b2k<b2k-1<b2k+1,2b2k-1=b2k+b2k+1,可得:b2k,b2k-1,b2k+1三个元素排成一个递增的等差数列,其公差为dk=b2k+1-b2k-1,化简即可证明.
解答 (I)解:由验证可得:$\frac{{S}_{n}}{n}$=0+(n-1)×$\frac{1}{2}$,∴Sn=$\frac{n(n-1)}{2}$,
∴当n=1时,a1=S1=0,当n≥2时,an=Sn-Sn-1=$\frac{n(n-1)}{2}$-$\frac{(n-1)(n-2)}{2}$=n-1,
∴an=n-1.
(II)证明:bn=$\frac{4}{15}$•(-2)${\;}^{{a}_{n}}$=$\frac{4}{15}$•(-2)n-1,
∴b2k-1=$\frac{4}{15}(-2)^{2k-2}$=$\frac{4}{15}•{2}^{2k-2}$,b2k=$\frac{4}{15}•(-2)^{2k-1}$=-$\frac{4}{15}•{2}^{2k-1}$,b2k+1=$\frac{4}{15}(-2)^{2k}$=$\frac{4}{15}•{2}^{2k}$.
∴b2k<b2k-1<b2k+1,∴2b2k-1=b2k+b2k+1,
可得:b2k,b2k-1,b2k+1三个元素排成一个递增的等差数列,
其公差为dk=b2k+1-b2k-1=$\frac{4}{15}$(22k-22k-2)=$\frac{{4}^{k}}{5}$.
∴$\frac{{d}_{k+1}}{{d}_{k}}$=$\frac{\frac{{4}^{k+1}}{5}}{\frac{{4}^{k}}{5}}$=4,
∴数列{dk}为等比数列.
点评 本题考查了递推关系、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x-y+1=0 | B. | x+y+1=0 | C. | x+y-7=0 | D. | x-y-7=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{5}{6}$ | B. | $\frac{5}{6}$ | C. | ($\frac{1}{2}$)${\;}^{\frac{13}{3}}$ | D. | ($\frac{1}{2}$)${\;}^{\frac{1}{3}}$-$\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 114 | B. | 10 | C. | 150 | D. | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-e | B. | e-1 | C. | -1-e | D. | e+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 房间A | 房间B | 房间C |
| 35m2 | 20m2 | 28m2 |
| 涂料1 | 涂料2 | 涂料3 |
| 16元/m2 | 18元/m2 | 20元/m2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com