精英家教网 > 高中数学 > 题目详情
7.如图所示,当输入a,b分别为2,3时,最后输出的M的值是3.

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数M=$\left\{\begin{array}{l}{a}&{a>b}\\{b}&{a≤b}\end{array}\right.$的值,代入a=2,b=3,即可得到答案.

解答 解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是计算分段函数M=$\left\{\begin{array}{l}{a}&{a>b}\\{b}&{a≤b}\end{array}\right.$的值,
∵a=2<b=3,
∴M=3
故答案为:3.

点评 算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,数列{$\frac{{S}_{n}}{n}$}是首项为0,公差为$\frac{1}{2}$的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{15}$•(-2)${\;}^{{a}_{n}}$(n∈N*),对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求证:数列{dk}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.太原五中是一所有着百年历史的名校,图1是某一阶段来我校参观学习的外校人数统计茎叶图,第1次到第14次参观学习人数依次记为A1,A2,…,A14,图2是统计茎叶图中人数在一定范围内的一个算法流程图,那么算法流程图输出的结果是9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:
货物体积(升/件)重量(公斤/件)利润(元/件)
20108
102010
运输限制110100
在最合理的安排下,获得的最大利润的值为62.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若数列{an}前n项和为Sn,a1=a2=2,且满足Sn+Sn+1+Sn+2=3n2+6n+5,则S47等于2209.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=ax+{log_2}({2^x}+1)$,其中a∈R.
(1)当a=-$\frac{1}{2}$时,求证:函数f(x)是偶函数;
(2)已知a>0,函数f(x)的反函数为f-1(x),若函数y=f(x)+f-1(x)在区间[1,2]上的最小值为1+log23,求函数f(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}中,若a1=0,ai=k2(i∈N*,2k≤i<2k+1,k=1,2,3,…),则满足ai+a2i≥100的i的最小值为
128.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设x,y,z是大于0的实数,则$\frac{xy+yz+zx}{6{x}^{2}+6{y}^{2}+6{z}^{2}}$的最大值是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)是一次函数,f(1)=1,且f(2),f(3)+1,f(5)成等差数列,若an=f(n),n∈N*
(1)求证:{an}是等差数列;
(2)在{an}每相邻的两项之间插入2个数,构成一个新的等差数列{bn},求数列{bn}的前n项和Bn

查看答案和解析>>

同步练习册答案