精英家教网 > 高中数学 > 题目详情
5.已知奇函数F(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-\frac{4}{3},(x>0)}\\{f(x),(x<0)}\end{array}\right.$,则F(f(log2$\frac{1}{3}$))=(  )
A.-$\frac{5}{6}$B.$\frac{5}{6}$C.($\frac{1}{2}$)${\;}^{\frac{13}{3}}$D.($\frac{1}{2}$)${\;}^{\frac{1}{3}}$-$\frac{4}{3}$

分析 根据函数F(x)的奇偶性求出f(x),再依次计算f(log2$\frac{1}{3}$),F(f(log2$\frac{1}{3}$)).

解答 解:当x<0时,-x>0.
∵F(x)是奇函数,
∴F(x)=-F(-x)=-($\frac{1}{2}$)-x+$\frac{4}{3}$,
即f(x)=-($\frac{1}{2}$)-x+$\frac{4}{3}$.
即F(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-\frac{4}{3},x>0}\\{-(\frac{1}{2})^{-x}+\frac{4}{3},x<0}\end{array}\right.$.
∴f(log2$\frac{1}{3}$)=-$\frac{1}{3}$+$\frac{4}{3}$=1.
∴F(f(log2$\frac{1}{3}$))=F(1)=$\frac{1}{2}-\frac{4}{3}=-\frac{5}{6}$.
故选A.

点评 本题考查了函数奇偶性的性质,分段函数求值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.根据下列条件,求角α的指定的三角函数值:
(1)已知sin$α=-\frac{\sqrt{3}}{2}$,且α是第三象限角,求cosα和tanα;
(2)已知tanα=-3,且α是第二象限角,求sinα和cosα;
(3)已知cos$α=\frac{12}{13}$,且α是第四象限角,求sinα和tanα;
(4)已知sin$α=-\frac{1}{2}$,α∈R,求cosα和tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5},集合A=(1,2,5},∁UB=(1,3,5},则A∩B=(  )
A.{2}B.{5}C.{1,2,4,5}D.{3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=sin2x在[-π,π]内满足$\frac{{f({x_1})}}{x_1}=\frac{{f({x_2})}}{x_2}=…\frac{{f({x_n})}}{x_n}$的n的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设变量x,y满足约束条件$\left\{{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}}\right.$,则z=x-3y的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={0,1,2},B={x|x2-x-2<0},则A∩B=(  )
A.{0,1,2}B.{1,2}C.{0,1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,数列{$\frac{{S}_{n}}{n}$}是首项为0,公差为$\frac{1}{2}$的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{4}{15}$•(-2)${\;}^{{a}_{n}}$(n∈N*),对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求证:数列{dk}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π),它们的图象有一个横坐标为$\frac{π}{3}$的交点,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:
货物体积(升/件)重量(公斤/件)利润(元/件)
20108
102010
运输限制110100
在最合理的安排下,获得的最大利润的值为62.

查看答案和解析>>

同步练习册答案