精英家教网 > 高中数学 > 题目详情
已知函数f(x)与g(x)满足f(2+x)=f(2-x),g(x+1)=g(x-1),且f(x)在区间[2,+∞)上为减函数,令h(x)=f(x)•|g(x)|,则下列不等式正确的有
 

①h(-2)≥h(4)
②h(-2)≤h(4)
③h(0)>h(4)
④h(0)=h(4).
考点:抽象函数及其应用
专题:函数的性质及应用
分析:由已知中函数f(x)与g(x)满足f(2+x)=f(2-x),g(x+1)=g(x-1),且f(x)在区间[2,+∞)上为减函数,可判断出f(4)=f(0),f(-2)<f(4),及g(-2)=g(0)=g(2)=g(4),结合不等式的基本性质可得答案.
解答: 解:∵函数f(x)满足f(2+x)=f(2-x),
故函数f(x)的图象关于直线x=2对称
当x=2时,f(4)=f(0)…①
又∵f(x)在区间[2,+∞)上为减函数,
∴f(x)在区间(-∞,2]上为增函数,
当x=4时,f(6)=f(-2)<f(4)…②
又∵g(x+1)=g(x-1),故函数g(x)是又2为周期的周期函数
g(-2)=g(0)=g(2)=g(4)…③,
∵h(x)=f(x)•|g(x)|,
由①③得:h(0)=h(4).
由①②得:h(-2)≤h(4)
故答案为:②④
点评:本题考查的知识点是抽象函数及其应用,函数的对称性,函数的周期性,不等式的基本性质,其中根据已知分析出f(4)=f(0),f(-2)<f(4),及g(-2)=g(0)=g(2)=g(4)是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的侧面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的表面积为(  )
A、20+12
2
B、20+24
2
C、20+12
5
D、56

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=loga
1+x
1-x
(a>0,a≠1)

(Ⅰ)求f(x)的定义域;             
(Ⅱ)判断f(x)的奇偶性并予以证明;
(Ⅲ)写出f(x)的单调区间.(不必证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log
1
2
(-x2+3x+10)
的增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+a(x2-x)
(1)若a=-1,求证f(x)有且仅有一个零点;
(2)若对于x∈[1,2],函数f(x)图象上任意一点处的切线的倾斜角都不大于
π
4
,求实数a的取值范围;
(3)若f(x)存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义行列式运算:
.
a1a2
a3a4
.
=a1a4-a2a3,将函数f(x)=
.
3
cosx
1sinx
.
的图象向左平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意的x∈R,函数f(x)满足f(x+1)=-f(x),且f(2013)=-2013,则f(-1)=(  )
A、1B、-1
C、2013D、-2013

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列算式:
1=1,
3+5=8,
7+9+11=27,
13+15+17+19=64,
21+23+25+27+29=125,

猜测第n行的式子为
 

查看答案和解析>>

同步练习册答案