| A. | x=1时,y极大值=0 | B. | x=e时,y极大值=$\frac{1}{e^2}$ | ||
| C. | x=e时,y极小值=$\frac{1}{e^2}$ | D. | $x=\sqrt{e}$时,y极大值=$\frac{1}{2e}$ |
分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.
解答 解:f(x)使得定义域是(0,+∞),
f′(x)=$\frac{x-2xlnx}{{x}^{4}}$=$\frac{1-2lnx}{{x}^{3}}$,
令f′(x)>0,解得:0<x<$\sqrt{e}$,
令f′(x)<0,解得:x>$\sqrt{e}$,
故f(x)在(0,$\sqrt{e}$)递增,在($\sqrt{e}$,+∞)递减,
故x=$\sqrt{e}$时,f(x)的极大值是f($\sqrt{e}$)=$\frac{1}{2e}$,
故选:D.
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 至少3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com