精英家教网 > 高中数学 > 题目详情
15.关于函数$f(x)=\frac{lnx}{x^2}$极值的判断,正确的是(  )
A.x=1时,y极大值=0B.x=e时,y极大值=$\frac{1}{e^2}$
C.x=e时,y极小值=$\frac{1}{e^2}$D.$x=\sqrt{e}$时,y极大值=$\frac{1}{2e}$

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.

解答 解:f(x)使得定义域是(0,+∞),
f′(x)=$\frac{x-2xlnx}{{x}^{4}}$=$\frac{1-2lnx}{{x}^{3}}$,
令f′(x)>0,解得:0<x<$\sqrt{e}$,
令f′(x)<0,解得:x>$\sqrt{e}$,
故f(x)在(0,$\sqrt{e}$)递增,在($\sqrt{e}$,+∞)递减,
故x=$\sqrt{e}$时,f(x)的极大值是f($\sqrt{e}$)=$\frac{1}{2e}$,
故选:D.

点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的函数f(x)的导函数为f′(x),f(x)+f′(x)=x,f(1)=1,则f(x)的零点个数为(  )
A.0B.1C.2D.至少3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示在6×6的方格中,有A,B两个格子,则从该方格表中随机抽取一个矩形,该矩形包含格子A但不包含格子B的概率为$\frac{4}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.现有2名男生和3名女生.
(Ⅰ)若其中2名男生必须相邻排在一起,则这5人站成一排,共有多少种不同的排法?
(Ⅱ)若男生甲既不能站排头,也不能站排尾,这5人站成一排,共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某程序框图如图所示,若输出的S=26,则判断框内应填入:k>3;

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.极坐标方程ρ(cosθ+sinθ)-1=0化为直角坐标方程是x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:函数f(x)=x2-2ax+3在区间[-1,2]上单调递增;
命题q:函数g(x)=lg(x2+ax+4)的定义域为R;
若命题“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a∈R,函数f(x)满足f(2x)=x2-2ax+a2-1.
(Ⅰ)求f(x)的解析式,并写出f(x)的定义域;
(Ⅱ)若f(x)在$[{2^{a-1}},{2^{{a^2}-2a+2}}]$上的值域为[-1,0],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,则$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

同步练习册答案