精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
|lgx|,x>0
x+7,x≤0
,若关于x的方程f(x2+2x)=a有6个不相等的实根,则实数a的取值范围是(  )
A、(0,6]
B、(0,7]
C、(6,7]
D、(6,7)
考点:根的存在性及根的个数判断,函数的零点与方程根的关系
专题:计算题,函数的性质及应用
分析:由于本题是分段函数,要注意讨论x2+2x的范围.
解答: 解:∵f(x2+2x)=a,
∴|lg(x2+2x)|=a(x2+2x>0)或x2+2x+7=a(x2+2x≤0),
∴x2+2x-10a=0或x2+2x-10-a=0或x2+2x+7-a=0(7-a≥0)
若关于x的方程f(x2+2x)=a有6个不相等的实根,
则上述三个方程都有两个不同的根,且方程之间也没有同根;
方程x2+2x-10a=0和x2+2x-10-a=0显然都有两个不同的根,
方程x2+2x+7-a=0有两个不同的根,
则△=4-4(7-a)>0(a≤7)
解得,6<a≤7.
∵两个方程的二次项系数及一次项系数相同,但常数项互不相同,
∴三个方程也没有相同的根,
则有6个根.
故选C.
点评:本题考查了根的个数的判断,注意综合分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,一共有多少种选法?(  )
A、5B、4C、9D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

2013年11月,重庆巴蜀中学举行80周年校庆,主办方将“善、雅、志;公正;诚朴”做成灯笼悬挂在主会场(如图所示),校庆结束后,要将这7个灯笼撤下来,每次撤其中一列最下面的一个,则不同的撤法种数为(  )
A、180B、210
C、330D、524

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个非零向量,有以下四个说法:
①若
a
b
,则向量
a
b
方向上的投影为|
a
|;
②若
a
b
<0,则向量
a
b
的夹角为钝角;
③若|
a
+
b
|=|
a
|-|
b
|,则存在实数λ,使得
b
a

④若存在实数λ,使得
b
a
,则|
a
+
b
|=|
a
|-|
b
|.
其中正确的说法个数有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,an∈C,a12+a22+a32=-1,求a1•a3=(  )
A、2iB、-2iC、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

若随机变量X的分布列如下表,且EX=6.3,则表中a的值为(  )
X4a9
P0.50.1b
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

分别在两个平行平面内的两条直线的位置关系是(  )
A、异面B、平行
C、相交D、可能共面,也可能异面

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=-25,前n项和为Sn,S3=S8,则Sn的最小值为(  )
A、-80B、-76
C、-75D、-74

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinx+acosx,
(1)若a=
3
,求f(x)的最大值及对应的x的值.
(2)若f(
π
4
)=0,f(x)=
1
5
(0<x<π),求tanx的值.

查看答案和解析>>

同步练习册答案