精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,an∈C,a12+a22+a32=-1,求a1•a3=(  )
A、2iB、-2iC、2D、-2
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:由题意可得,i+1.i,i-1,符合题意,即可得出结论.
解答: 解:由题意可得,i+1,i,i-1,符合题意,
∴a1•a3=-2,
故选:D.
点评:本题考查等差数列的性质,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

sin
13π
6
=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论不正确的是(  )
A、x,y为正数,则
x
y
+
y
x
≥2
B、
x2+2
x2+1
≥2
C、lgx+logx10≥2
D、a为正数,则(1+a)(1+
1
a
)≥4

查看答案和解析>>

科目:高中数学 来源: 题型:

抛掷一枚骰子,观察出现的点数,若已知出现的点数不超过4,则出现的点数是奇数的概率为(  )
A、
1
3
B、
1
4
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:①当0≤x≤2时,f(x)=(x-1)2,②?x∈[0,8],f(x-
1
2
)=f(x+
3
2
).若方程f(x)=Mlog2x在[0,8]上有偶数个根,则正数M的取值范围是(  )
A、0<M≤
1
3
B、0<M≤
1
3
或M=1或2
C、0<M≤
1
3
或M=1或
1
2
D、0<M≤
1
3
或M=1或
1
2
或log62

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|lgx|,x>0
x+7,x≤0
,若关于x的方程f(x2+2x)=a有6个不相等的实根,则实数a的取值范围是(  )
A、(0,6]
B、(0,7]
C、(6,7]
D、(6,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C的对边分别是a、b、c,若cosB=
3
4
,sinC=2sinA,且S△ABC=
7
4
,则b=(  )
A、
2
B、2
C、2
2
D、
30

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点O为△ABC所在平面内一点,且
OA
2+
BC
2=
OB
2+
CA
2,那么点O的轨迹一定过△ABC的(  )
A、重心B、垂心C、内心D、外心

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且f(x)在[-3,-2]上是减函数,α,β是锐角三角形的两个内角,则f(sinα)与f(cosβ)的大小关系是(  )
A、f(sinα)>f(cosβ)
B、f(sinα)<f(cosβ)
C、f(sinα)=f(cosβ)
D、f(sinα)与f(cosβ)的大小关系不确定

查看答案和解析>>

同步练习册答案