精英家教网 > 高中数学 > 题目详情
已知f(x)=sinx+acosx,
(1)若a=
3
,求f(x)的最大值及对应的x的值.
(2)若f(
π
4
)=0,f(x)=
1
5
(0<x<π),求tanx的值.
考点:两角和与差的正弦函数,三角函数线
专题:三角函数的求值,三角函数的图像与性质
分析:(1)a=
3
时,利用两角和的正弦值化简f(x),求出x取何值时f(x)有最大值;
(2)由f(
π
4
)=0求出a的值,再由f(x)=
1
5
,求出cosx、sinx的值,从而求出tanx的值.
解答: 解:(1)a=
3
时,
f(x)=sinx+
3
cosx
=2sin(x+
π
3
),…(2分)
当sin(x+
π
3
)=1,
即x+
π
3
=
π
2
+2kπ(k∈Z),
∴x=
π
6
+2kπ(k∈Z)时,
f(x)有最大值2; …(6分)
(2)∵f(
π
4
)=sin
π
4
+acos
π
4

=
2
2
+
2
2
a=0,
∴a=-1;…(8分)
∴f(x)=sinx-cosx=
1
5

(sinx-cosx)2=
1
25

sinx•cosx=
12
25

即(cosx+
1
5
)cosx=
12
25
; 
整理得,25cos2x+5cosx-12=0,
解得,cosx=
3
5
,或cosx=-
4
5

当cosx=
3
5
时,sinx=
4
5

当cosx=-
4
5
时,sinx=-
3
5

又∵x∈(0,π)∴取
cosx=
3
5
sinx=
4
5

∴tanx=
4
3
.…(14分)
点评:本题考查了三角恒等变换的应用问题以及三角函数求值的问题,也考查了一定的计算能力,是较基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|lgx|,x>0
x+7,x≤0
,若关于x的方程f(x2+2x)=a有6个不相等的实根,则实数a的取值范围是(  )
A、(0,6]
B、(0,7]
C、(6,7]
D、(6,7)

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A⊆X,X为全集,则称函数fA(x)=
1,x∈A
0,x∉A
为A的特征函数.记CxA=
.
A
那么,对A,B⊆X,下列命题不正确的是(  )
A、A⊆B⇒fA(x)≤fB(x),?x∈X
B、f
.
A
(x)=1-fA(x),?x∈X
C、fA∩B(x)=fA(x)fB(x),?x∈X
D、fA∪B(x)=fA(x)+fB(x),?x∈X

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+
2(1-x)
1+x
(a∈R)定义域为(0,1),则f(x)的图象不可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且f(x)在[-3,-2]上是减函数,α,β是锐角三角形的两个内角,则f(sinα)与f(cosβ)的大小关系是(  )
A、f(sinα)>f(cosβ)
B、f(sinα)<f(cosβ)
C、f(sinα)=f(cosβ)
D、f(sinα)与f(cosβ)的大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(x+
π
3
)[sin(x+
π
3
)-
3
cos(x+
π
3
)].
(1)求f(x)的值域和最小正周期;
(2)若对任意x∈[0,
π
6
],使得m[f(x)+
3
]+2=0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.
(1)求证:△ADE∽△BEC;
(2)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)若实数s,t是方程20x2+14x+1=0的两不等实根,求值:s2+t2
(Ⅱ)若实数s,t分别满足20s2+14s+1=0,t2+14t+20=0且st≠1,求值:
st+4s+1
t

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>0},B={x|x2-(a+b)x+ab<0,a,b∈R},D=A∩B,函数f(x)=x3+x2+bx+1
(1)当b=1时,求函数f(x)在点(1,f(1))处的切线方程;
(2)当a=b+1,且f(x)在D上有极小值时,求b的取值范围;
(3)在(2)的条件下,不等式f(x)≤1对任意的x∈D恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案