精英家教网 > 高中数学 > 题目详情
如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.
(1)求证:△ADE∽△BEC;
(2)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.
考点:相似三角形的判定
专题:立体几何
分析:(1)由∠DEC=90°,可得∠AED+∠BEC=90°,又由∠AED+∠ADE=90°,可得∠BEC=∠ADE,即可证明;
(2)结论:△BEC的周长与m值无关.利用相似三角形的性质、勾股定理即可得出.
解答: (1)证明:∵∠DEC=90°,∴∠AED+∠BEC=90°,
又∵∠AED+∠ADE=90°,
∴∠BEC=∠ADE,而∠A=∠B=90°,
∴△ADE∽△BEC.
(2)解:结论:△BEC的周长与m无关.
在△EBC中,由AE=m,AB=a,得BE=a-m,设AD=x,
∵△ADE∽△BEC,∴
AD
BE
=
AE
BC
=
DE
EC
,即:
x
a-m
=
m
BC
=
a-x
EC

解得:BC=
(a-m)m
x
EC=
(a-m)(a-x)
x

∴△BEC的周长=BE+BC+EC=(a-m)+
(a-m)m
x
+
(a-m)(a-x)
x
=(a-m)(1+
m
x
+
a-x
x
)
=
a2-m2
x
    ①
∵AD=x,由已知AD+DE=AB=a得DE=a-x,又AE=m
在Rt△AED中,由勾股定理得:x2+m2=(a-x)2
化简整理得:a2-m2=2ax  ②
把②式代入①,得△BEC的周长=BE+BC+EC=
2ax
x
=2a,
∴△BEC的周长与m无关.
点评:本题考查了相似三角形的性质、勾股定理、互余角之间的关系、三角形的周长,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

分别在两个平行平面内的两条直线的位置关系是(  )
A、异面B、平行
C、相交D、可能共面,也可能异面

查看答案和解析>>

科目:高中数学 来源: 题型:

过点E(-
p
2
,0)的直线与抛物线y2=2px(p>0)交于A、B两点,F是抛物线的焦点,若A为线段EB的中点,且|AF|=3,则p=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinx+acosx,
(1)若a=
3
,求f(x)的最大值及对应的x的值.
(2)若f(
π
4
)=0,f(x)=
1
5
(0<x<π),求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),对任意x,y∈(0,+∞)都有f(
x
y
)=f(x)-f(y),且当x>1时,f(x)>0.
(1)求证f(1)=0;
(2)判断f(x)在(0,+∞)上的单调性;
(3)若f(2)=1,不等式f(x)-f(
1
x-3
)≤2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sinωx•cos(ωx+
π
4
)+2sin2ωx+
1
2
,直线y=1-
2
2
与f(x)的图象交点之间的最短距离为π.
(Ⅰ)求f(x)的解析式及其图象的对称中心;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,若∠A是锐角,且f(
A
2
+
π
8
)=
3
2
,c=4,a+b=4
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=2an+1,令bn=an+1-an
(1)证明:数列{bn}是等比数列;
(2)设数列{nan}的前n项和为Sn,求使Sn+
n(n+1)
2
>120成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义y=log(1+x)F(x,y),x>0,y>0.
(1)比较F(1,3)与F(2,2)的大小;
(2)若e<x<y,证明:F(x-1,y)>F(y-1,x);
(3)设函数f(x)=F[1,log2(x3+ax2+bx+1)]的图象为曲线C.曲线C在x0处的切线的斜率为k,若x0∈(1,1-a)且存在实数b使得k=-4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
结果奖励
1红1白10元
1红1黑5元
2黑2元
1白1黑不获奖
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望;
(2)某顾客参与两次摸球,求他能中奖的概率.

查看答案和解析>>

同步练习册答案