精英家教网 > 高中数学 > 题目详情
14.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,1),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{5}$

分析 根据条件即可求出$\overrightarrow{a}•\overrightarrow{b}$及$|\overrightarrow{b}|$的值,而$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影计算公式为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$,从而求出该投影的值.

解答 解:$\overrightarrow{a}•\overrightarrow{b}=-2+1=-1$,$|\overrightarrow{b}|=\sqrt{2}$;
∴$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为:
$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}=\frac{-1}{\sqrt{2}}=-\frac{\sqrt{2}}{2}$.
故选A.

点评 考查投影的定义,投影的计算公式,向量数量积的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=({sin\frac{ω}{2}x,sinωx}),\overrightarrow b=({sin\frac{ω}{2}x,\frac{1}{2}})$,其中ω>0,若函数$f(x)=\overrightarrow a•\overrightarrow b-\frac{1}{2}$在区间(π,2π)内没有零点,则ω的取值范围是(  )
A.$({0,\frac{1}{8}}]$B.$({0,\frac{5}{8}}]$C.$({0,\frac{1}{8}}]∪[{\frac{5}{8},1}]$D.$({0,\frac{1}{8}}]∪[{\frac{1}{4},\frac{5}{8}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在等比数列{an}中,若a1=2,a4=16,则{an}的前5项和S5等于(  )
A.30B.31C.62D.64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,圆锥的横截面为等边三角形SAB,O为底面圆圆心,Q为底面圆周上一点.
(Ⅰ)如果BQ的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,设二面角A-SB-Q的大小为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某超市计划每天购进某商品若干件,该超市每销售一件该商品可获利润80元,若供大于求,剩余商品全部退回,但每件商品亏损20元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量n(单位:件,n∈N),整理得下表:
日需求量789101112
频数571014104
若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[800,900]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sin($\frac{π}{2}$-α)=-$\frac{3}{5}$,0<α<π,则sin2α=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由曲线y=xa(a为常数,且a>0),直线y=0和x=1围成的平面图形的面积记为${∫}_{0}^{1}$xadx,已知${{∫}_{0}^{1}x}^{\frac{1}{2}}$dx=$\frac{2}{3}$,${∫}_{0}^{1}xdx$=$\frac{1}{2}$,${∫}_{0}^{1}$${x}^{\frac{3}{2}}$dx=$\frac{2}{5}$,${∫}_{0}^{1}$x2dx=$\frac{1}{3}$,${∫}_{0}^{1}$${x}^{\frac{5}{2}}$dx=$\frac{2}{7}$,${∫}_{0}^{1}$x3dx=$\frac{1}{4}$,…,照此规律,当a∈(0,+∞)时,${∫}_{0}^{1}$xndx=$\frac{2}{2a+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,连接..并延长交抛物线C于点Q,若|PF|=$\frac{4}{5}$|PQ|,则|QF|=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点O是△ABC的内心,∠BAC=30°,BC=1,则△BOC面积的最大值为$\frac{1}{4}$cot52.5°.

查看答案和解析>>

同步练习册答案