精英家教网 > 高中数学 > 题目详情
18.已知一个总体中有100个个体,将其随机编号为0,1,2,…10.现用系统抽样法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组抽取的号码的个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码为(  )
A.63B.66C.73D.76

分析 根据总体的容量比上样本的容量求出间隔k的值,再根据系统抽样方法的规定,求出第7组中抽取的号码是:m+60的值.

解答 解:由题意知,间隔k=$\frac{100}{10}$=10,
∵在第1组随机抽取的号码为m=6,6+7=13,∴在第7组中抽取的号码63.
故选:A.

点评 本题考查了系统抽样方法的应用,由总体的容量比上样本的容量求出间隔k的值,根据在第1组随机抽取的号码为m,则以后抽取的号码是一次加上间隔k的倍数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.化简:$\frac{1}{cos2θ}$-tanθtan2θ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设a∈R,且复数$\frac{a}{1+i}$+$\frac{1+i}{2}$是纯虚数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见表.规定:A、B、C三级为合格等级,D为不合格等级.
百分制85以及以上70分到84分60分到69分60分以下
等级ABCD
为了解该校高一年级学生身体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(I)求n和频率分布直方图中的x,y的值;
(Ⅱ)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;
(Ⅲ)在选取的样本中,从A、C两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C等级的学生人数,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列命题:
①已知m,n表示两条不同的直线,α,β表示两个不同的平面,并且m⊥α,n?β,则“α⊥β”是“m∥n”的必要不充分条件;  
②不存在x∈(0,1),使不等式成立log2x<log3x; 
③“若am2<bm2,则a<b”的逆命题为真命题;
④?θ∈R,函数f(x)=sin(2x+θ)都不是偶函数.
正确的命题序号是①.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a>c>b>0,则对$\frac{a-b}{c}$+$\frac{b-c}{a}$+$\frac{c-a}{b}$的符号判断正确的是(  )
A.只取正号B.只取负号
C.可取正号,也可取负号D.可取正号,负号,也可取零

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,则z=3x-y的最大值是(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)与圆N:x2+(y-1)2=$\frac{1}{2}$的公共弦长为$\sqrt{2}$
(1)求椭圆C的方程;
(2)若椭圆C上存在两个不同的点A,B关于过点M(-$\frac{b}{2}$,0)且不与坐标轴垂直的直线l对称,O为坐标原点,求△AOB面积的最大值,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设等差数列{an}的前n项和为Sn,若S9=2,则a2+a10+a11-a13=(  )
A.$\frac{2}{9}$B.$\frac{4}{9}$C.2D.4

查看答案和解析>>

同步练习册答案