精英家教网 > 高中数学 > 题目详情
8.设等差数列{an}的前n项和为Sn,若S9=2,则a2+a10+a11-a13=(  )
A.$\frac{2}{9}$B.$\frac{4}{9}$C.2D.4

分析 由等差数列的性质根据已知条件先求出a5,再由等差数列的通项公式能求出结果.

解答 解:设等差数列{an}的公差为d,
由S9=2,得$\frac{9({a}_{1}+{a}_{9})}{2}$=$\frac{9×2{a}_{5}}{2}$=9a5=2,
∴${a}_{5}=\frac{2}{9}$,
∴a2+a10+a11-a13=2a1+(1+9+10-12)d=2a1+8d=2a5=$\frac{4}{9}$.
故选:B.

点评 本题考查等差数列中四项的代数和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知一个总体中有100个个体,将其随机编号为0,1,2,…10.现用系统抽样法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组抽取的号码的个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码为(  )
A.63B.66C.73D.76

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A,B,焦距为2$\sqrt{2}$,直线x=-a与y=b交于点D,且|BD|=3$\sqrt{2}$,过点B作直线l交直线x=-a于点M,交椭圆于另一点P.
(1)求椭圆的方程;
(2)证明:$\overrightarrow{OM}•\overrightarrow{OP}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设P={x|2x<16},Q={x|x2<4},则(  )
A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的函数f(x)满足:f(x+1)=$\sqrt{2f(x)-{f}^{2}(x)}$+1,数列{an}的前2015项和为-$\frac{4031}{4}$,an=f2(n)-2f(n),n∈N*,则f(2015)的值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,若(3$\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥$\overrightarrow{a}$,则实数λ的值为(  )
A.2B.3C.-3D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,c=$\sqrt{{a}^{2}-{b}^{2}}$)的左焦点与上顶点的直线为l,若坐标原点O到直线l的距离为$\frac{c}{2}$,则椭圆的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式组$\left\{\begin{array}{l}2x+y-5≤0\\ 3x-y≥0\\ x-2y≤0\end{array}\right.$的解集记为D,$z=\frac{y+1}{x+1}$,有下面四个命题:
p1:?(x,y)∈D,z≥1;p2:?(x,y)∈D,z≥1
p3:?(x,y)∈D,z≤2;p4:?(x,y)∈D,z<0
其中的真命题是(  )
A.p1,p2B.p1,p3C.p1,p4D.p2,p3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知线性回归直线方程是$\stackrel{∧}{y}$=1.23x+0.08,求m的值.
x23456
y2.23.8m6.57.0

查看答案和解析>>

同步练习册答案