精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)是定义在[-3,0)∪(0,3]上的奇函数,当x∈(0,3]时,f(x)的图象如图所示,那么满足不等式f(x)≥2x-1 的x的取值范围是[-3,-2]∪[0,1].

分析 由图象可知,当x∈(0,3]时,f(x)单调递减,当x∈[-3,0)时,f(x)单调递减,分别利用函数的图象,结合不等式f(x)≥2x-1,即可得出结论.

解答 解:由图象可知,x=0时,2x-1=0,∴f(x)≥0,成立;
当x∈(0,3]时,f(x)单调递减,
当0<x≤1时,f(x)>1,2x-1≤1,满足不等式f(x)≥2x-1;
当1<x<3时,f(x)<1,1<2x-1<7,不满足不等式f(x)≥2x-1; 
∵函数f(x) 是定义在[-3,0)∪(0,3]上的奇函数,
∴当x∈[-3,0)时,f(x)单调递减,
当-3<x≤-2时,-$\frac{3}{4}$≤f(x)<0,-$\frac{7}{8}$<2x-1≤-$\frac{3}{4}$,满足不等式f(x)≥2x-1;
当x>-2时,f(x)<-$\frac{3}{4}$,2x-1>-$\frac{3}{4}$,不满足不等式f(x)≥2x-1; 
∴满足不等式f(x)≥2x-1 的x的取值范围是[-3,-2]∪[0,1].
故答案为:[-3,-2]∪[0,1].

点评 本题考查不等式的解法,考查数形结合的数学思想,考查学生分析解决问题的能力,正确运用函数的图象是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥1}\\{lo{g}_{4}x,0<x<1}\end{array}\right.$则f(f(2))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,三棱柱ABC-A1B1C1的各棱长均为2,且侧棱与底面垂直,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.原点到直线4x+3y-1=0的距离为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,在区间($\frac{π}{2}$,π)上为增函数的是(  )
A.y=sinxB.y=cosxC.y=tanxD.y=-tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知元素为实数的集合S满足下列条件:①0∉S,1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(Ⅰ)若{2,-2}⊆S,求使元素个数最少的集合S;
(Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线经过直线3x+4y-2=0与直线2x+y+2=0的交点P,并且垂直于直线x-2y-1=0.
(Ⅰ)求交点P的坐标;
(Ⅱ)求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{{x}^{2}+2ax+1,x∈(0,+∞)}\end{array}\right.$,若函数g(x)=f(x)+2x-a有三个零点,则实数a的取值范围是(  )
A.(0,+∞)B.(-∞,-1)C.(-∞,-3)D.(0,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设抛物线C:y2=2px(p>0)的焦点为F,准线为l,M∈C,以M为圆心的圆M与准线l相切于点Q,Q点的纵坐标为$\sqrt{3}p$,E(5,0)是圆M与x轴不同于F的另一个交点,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案