【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2
+acos2
=
c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C=
,△ABC的面积为2
,求c.
【答案】(1)见解析(2)
【解析】试题分析:(1)先根据二倍角公式降次,再根据正弦定理将边化为角,结合两角和正弦公式以及三角形内角关系化简得sinB+sinA=2sinC ,最后根据正弦定理得a+b=2c (2)先根据三角形面积公式得ab=8,再根据余弦定理解得c.
试题解析:(Ⅰ)证明:由正弦定理得:![]()
即
,
∴sinB+sinA+sinBcosA+cosBsinA=3sinC∴sinB+sinA+sin(A+B)=3sinC
∴sinB+sinA+sinC=3sinC…∴sinB+sinA=2sinC ∴a+b=2c
∴a,c,b成等差数列.
(Ⅱ)
∴ab=8…,
c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a+b)2﹣3ab=4c2﹣24.…∴c2=8得![]()
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C
上,过M作x轴的垂线,垂足为N,点P满足
.
(1)求点P的轨迹方程;
(2)设点
在直线
上,且
.证明:过点P且垂直于OQ的直线
过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过
,
两点.
(1)求椭圆
的方程及离心率;
(2)设点
在椭圆
上.试问直线
上是否存在点
,使得四边形
是平行四边形?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占
、朋友聚集的地方占
、个人空间占
.美国高中生答题情况是:家占
、朋友聚集的地方占
、个人空间占
.为了考察高中生的“恋家(在家里感到最幸福)”是否与国别有关,构建了如下
列联表.
在家里最幸福 | 在其它场所幸福 | 合计 | |
中国高中生 | |||
美国高中生 | |||
合计 |
(Ⅰ)请将
列联表补充完整;试判断能否有
的把握认为“恋家”与否与国别有关;
(Ⅱ)从中国高中生的学生中以“是否恋家”为标准采用分层抽样的方法,随机抽取了5人,再从这5人中随机抽取2人.若所选2名学生中的“恋家”人数为
,求随机变量
的分布列及期望.
附:
,其中
.
| 0.050 | 0.025 | 0.010 | 0.001 |
| 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测试中,客观题难度的计算公式为
,其中
为第
题的难度,
为答对该题的人数,
为参加测试的总人数.现对某校高三年级240名学生进行一次测试.共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如表所示:
![]()
测试后,随机抽取了 20名学生的答题数据进行统计,结果如下
![]()
(1)根据题中数据,估计这240名学生中第5题的实测答对人数;
(2)从抽取的20名学生中再随机抽取2名学生,记这2名学生中第5题答对的人数为
,求
的分布列和数学期望;
(3)定义统计量
,其中
为第
题的实测难度,
为第
题的预估难度
.规定:若
,则称该次测试的难度预估合理,否则为不合理.试据此判断本次测试的难度预估是否合理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 命题“若
,则
”的逆否命题为“若
,则
”
B. 若命题
“
,
”,则命题
的否定为“
,
”
C. “
”是“
”的充分不必要条件
D. “
”是“直线
与直线
互为垂直”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,为抑制房价过快上涨,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.
![]()
(1)地产数据研究院发现,3月至7月的各月均价
(万元/平方米)与月份
之间具有较强的线性相关关系,试建立
关于
的回归方程(系数精确到0.01);政府若不调控,依此相关关系预测第12月份该市新建住宅销售均价;
(2)地产数据研究院在2016年的12个月份中,随机抽取三个月的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为
,求
的分布列和数学期望.
参考数据:
,
,
;
回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重,经统计,这批学生的体重数据(单位:千克)全部介于
至
之间,将数据分成以下
组,第一组
,第二组
,第三组
,第四组,第五组
,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第
、
、
组中随机抽取
名学生做初检.
(Ⅰ)求每组抽取的学生人数.
(Ⅱ)若从
名学生中再次随机抽取
名学生进行复检,求这
名学生不在同一组的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com