精英家教网 > 高中数学 > 题目详情
为了解一大片经济林生长情况,随机测量其中的60株的底部周长(单位:cm),规定底部周长60cm及以上优质树木)将周长整理后画出的频率分布表和频率分布直方图如图:观察图形,回答下列问题:
组距频数频率
[39.5,49.5)   60.1
[49.5,59.5)0.15
[59.5,69.5)9
[69.5,79.5)18
[79.5,89.5)0.25
[89.5,99.5)30.05
合计
(1)补充上面的频率分布表和频率分布直方图.(填充部分用阴影表示)
(2)估计这片经济林中树木的优质率是多少?(周长60cm及以上优质树木).
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:(1)根据样本容量60和根据直方图的频率求出频率与频数,
(2)用样本估计总体,计算出样本中的优质率即可.
解答: 解:(1)
组距频数频率
[39.5,49.5)   60.1
[49.5,59.5)90.15
[59.5,69.5)90.15
[69.5,79.5)180.3
[79.5,89.5)150.25
[89.5,99.5)30.05
合计601

(2)周长60cm及以上优质树木优质率为1-(0.1+0.15)=0.75.
用样本估计总体,这片经济林中树木的优质率为0.75.
点评:考查频率的求法,频数分布直方图的画法,以及利用所学统计知识分析数据、解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和是Sn,且-1,Sn,an+1成等差数列(n∈N*),a1=1.
(1)求数列{an}的通项公式.
(2)若数列{bn}满足b1=a1,bn+1=bn+
1
3an
(n≥1)求数列{bn}的前n项和Tn
(3)函数f(x)=log3x,设数列{cn}满足cn=
1
(n+3)[f(an)+2]
求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通项公式;
2)若cn=anbn,{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的渐近线方程为3x±4y=0,并且经过点M(1,3),求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2lnx-x2
(1)求函数f(x)的单调递增区间;
(2)若关于x的方程f(x)+x2-x-2-a=0在区间[1,3]内恰有两个相异实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目新闻节目总计
20至40岁401858
大于40岁152742
总计5545100
(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(2)在上述抽取的5名观众中任取3名,求恰有1名观众的年龄为20至40岁的概率.
(3)在上述抽取的5名观众中任取3名,求至少有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
-alnx.(a∈R)
(1)当a=-1时,试确定函数f(x)在其定义域内的单调性;
(2)求函数f(x)在(0,e)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=2+t
y=-1-t
(t为参数),则直线l被曲线C截得的线段长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过抛物线y2=2px(p>0)的焦点,且交抛物线于A,B两点,交其准线于C点,已知|AF|=4,
CB
=3
BF
,则p=
 

查看答案和解析>>

同步练习册答案