精英家教网 > 高中数学 > 题目详情
4.若x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{3x-y-5≤0}\end{array}\right.$,求:
(1)z=2x+y的最小值;   
(2)z=x2+y2的范围.
(3)z=$\frac{y+x}{x}$的最大值.

分析 先根据约束条件画出可行域,再分别利用几何意义求最值.

解答 解:作出满足已知条件的可行域为△ABC内(及边界)区域,如图
其中A(1,2),B(2,1),C(3,4).
(1)目标函数z=2x+y,表示直线l:y=-2x+z,z表示该直线纵截距,当l过点A(1,2)时纵截距有最小值,故zmin=4.
(2)目标函数z=x2+y2表示区域内的点到坐标系点的距离的平方,又原点O到AB的距离d=$\frac{|3|}{\sqrt{2}}=\frac{3\sqrt{2}}{2}$且垂足是D($\frac{3}{2}$,$\frac{3}{2}$)在线段AB上,故OD2≤z≤OC2,即z∈[$\frac{9}{2}$,25];
(3)目标函数z=$\frac{y+x}{x}$=1+$\frac{y}{x}$,则$\frac{y}{x}$表示区域中的点与坐标原点连线的斜率,当直线过点A时,斜率最大,即$(\frac{y}{x})_{max}$=2,即zmax=3.

点评 本题考查了线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知B=$[\begin{array}{l}{2}&{3}\\{λ-1}&{4}\end{array}]$,且det(B)=-1,则λ=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设变量x,y满足$\left\{\begin{array}{l}{x≥0}\\{x≤y+1}\\{y≤1}\end{array}\right.$,则(x+y)2的最大值是(  )
A.9B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,直线l的参数方程为:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(Ⅰ)求曲线C的平面直角坐标方程;
(Ⅱ)设直线l与曲线C交于点M,N,若点P的坐标为(1,0),求点P与MN中点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,且Sn=3n2+2n-1,则数列{an}的通项公式an=$\left\{\begin{array}{l}{4,}&{n=1}\\{6n-1,}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC中,∠A=$\frac{π}{6}$,AB=3$\sqrt{3}$,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知13+23+…+n3=(1+2+…+n)2,运行如图所示的程序框图,则输出的i的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知一组数据8,9,x,10,7,6的平均数为8,那么x的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若P(2,1)为圆(x-1)2+y2=36的弦AB的中点,则直线AB的方程是(  )
A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.x+y-3=0

查看答案和解析>>

同步练习册答案