12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£®
£¨¢ñ£©ÇóÇúÏßCµÄÆ½ÃæÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚµãM£¬N£¬ÈôµãPµÄ×ø±êΪ£¨1£¬0£©£¬ÇóµãPÓëMNÖеãµÄ¾àÀ룮

·ÖÎö £¨¢ñ£©ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ${¦Ñ}^{2}=2\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñsin¦È+¦Ñcos¦È£©£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿ÉµÃ³ö£»
£¨II£©°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì¿ÉµÃ${t}^{2}-\sqrt{2}t$-1=0£¬ÓÉtµÄ¼¸ºÎÒâÒ壬¿ÉµÃµãPÓëMNÖеãµÄ¾àÀëΪ$|\frac{{t}_{1}+{t}_{2}}{2}|$£®

½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨¦È+$\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ${¦Ñ}^{2}=2\sqrt{2}¡Á\frac{\sqrt{2}}{2}$£¨¦Ñsin¦È+¦Ñcos¦È£©£¬
¿ÉµÃÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2=2y+2x£¬Å䷽Ϊ£¨x-1£©2+£¨y-1£©2=2£®
£¨¢ò£©°ÑÖ±ÏßlµÄ±ê×¼²ÎÊý·½³Ì´úÈëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ$£¨\frac{\sqrt{2}}{2}t£©^{2}+£¨\frac{\sqrt{2}}{2}t-1£©^{2}$=2£¬¼´${t}^{2}-\sqrt{2}t$-1=0£¬
ÓÉÓÚ¡÷=6£¾0£¬¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½Êµ¸ù£¬Ôò${t_1}+{t_2}=\sqrt{2}$£®
¡ßÖ±Ïßl¹ýµãP£¨1£¬0£©£¬
¡àÓÉtµÄ¼¸ºÎÒâÒ壬¿ÉµÃµãPÓëMNÖеãµÄ¾àÀëΪ$|{\frac{{{t_1}+{t_2}}}{2}}|=\frac{{\sqrt{2}}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óá¢Öеã×ø±ê¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÁ½¸öÕýÊýa£¬bÂú×ãa+b=1
£¨1£©ÇóÖ¤£º$\frac{1}{a}$+$\frac{1}{b}$¡Ý4
£¨2£©Èô²»µÈʽ|x-2|+|2x-1|¡Ü$\frac{1}{a}$+$\frac{1}{b}$¶ÔÈÎÒâÕýÊýa£¬b¶¼³ÉÁ¢£¬ÇóʵÊýxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=ex-mx+1µÄͼÏóΪÇúÏßC£¬ÈôÇúÏßC´æÔÚÓëÖ±Ïßy=$\frac{1}{2}$x´¹Ö±µÄÇÐÏߣ¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®º¯Êý$y=\sqrt{\frac{x-6}{x-1}}$µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1]¡È[6£¬+¡Þ£©B£®£¨-¡Þ£¬1£©¡È[6£¬+¡Þ£©C£®£¨-3£¬1£©¡È£¨2£¬+¡Þ£©D£®[-3£¬1£©¡È£¨2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªx£¾0£¬Óɲ»µÈʽx+$\frac{1}{x}$¡Ý2$\sqrt{x•\frac{1}{x}}$=2£¬x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$¡Ý3$\root{3}{\frac{x}{2}•\frac{x}{2}•\frac{4}{{x}^{2}}}$=3£¬x+$\frac{{3}^{3}}{{x}^{3}}$=$\frac{x}{3}$+$\frac{x}{3}$+$\frac{x}{3}$+$\frac{{3}^{3}}{{x}^{3}}$¡Ý4$\root{4}{\frac{x}{3}•\frac{x}{3}•\frac{x}{3}•\frac{{3}^{3}}{{x}^{3}}}$=4£¬¡­ÎÒÃÇ¿ÉÒԵóöÍÆ¹ã½áÂÛ£ºx+$\frac{a}{{x}^{n}}$¡Ýn+1£¨n¡ÊN+£©£¬Ôòa=nn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑ֪ʵÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}{£¨x-3£©^{2}+£¨y-2£©^{2}¡Ü1}\\{x-y-1¡Ý0}\end{array}\right.$£¬Ôòz=$\frac{y}{x-2}$µÄ×îСֵΪ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èôx£¬yÂú×ã$\left\{\begin{array}{l}{x-y+1¡Ý0}\\{x+y-3¡Ý0}\\{3x-y-5¡Ü0}\end{array}\right.$£¬Çó£º
£¨1£©z=2x+yµÄ×îСֵ£»   
£¨2£©z=x2+y2µÄ·¶Î§£®
£¨3£©z=$\frac{y+x}{x}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ä³´ÎÁª»¶»áÒª°²ÅÅ3¸ö¸èÎèÀà½ÚÄ¿¡¢2¸öСƷÀà½ÚÄ¿ºÍ1¸öÏàÉùÀà½ÚÄ¿µÄÑݳö˳Ðò£¬ÔòͬÀà½ÚÄ¿²»ÏàÁÚµÄÅÅ·¨ÖÖÊýÊÇ120£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª¼¯ºÏA={0£¬1£¬21}£¬¼¯ºÏB={x|x£¾1}£¬ÔòA¡ÉB={21}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸