分析 作出不等式组对应的平面区域,利用z的几何意义以及直线的斜率公式即可得到结论
解答
解:作出不等式组对应的平面区域阴影部分,如图:
z的几何意义为区域内的点到定点(2,0)的斜率,
由图象可知当直线经过点A时,z取得最大值,当直线与下半圆相切时,
z取得最小值,
由z=$\frac{y}{x-2}$得,y=zx-2z,即zx-y-2z=0,
由圆心到直线的距离d=$\frac{|3z-2-2z|}{\sqrt{1+{z}^{2}}}$=1,
解得z=$\frac{3}{4}$,
故z=$\frac{y}{x-2}$的最小值为$\frac{3}{4}$;
故答案为:$\frac{3}{4}$.
点评 本题主要考查线性规划的应用,利用直线和圆的位置关系,以及z的几何意义是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-3)∪(1,+∞) | C. | (-∞,-3)∪($\frac{1}{2}$,+∞) | D. | (-∞,-1)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com