精英家教网 > 高中数学 > 题目详情
17.已知实数x,y满足条件$\left\{\begin{array}{l}{(x-3)^{2}+(y-2)^{2}≤1}\\{x-y-1≥0}\end{array}\right.$,则z=$\frac{y}{x-2}$的最小值为$\frac{3}{4}$.

分析 作出不等式组对应的平面区域,利用z的几何意义以及直线的斜率公式即可得到结论

解答 解:作出不等式组对应的平面区域阴影部分,如图:
z的几何意义为区域内的点到定点(2,0)的斜率,
由图象可知当直线经过点A时,z取得最大值,当直线与下半圆相切时,
z取得最小值,
由z=$\frac{y}{x-2}$得,y=zx-2z,即zx-y-2z=0,
由圆心到直线的距离d=$\frac{|3z-2-2z|}{\sqrt{1+{z}^{2}}}$=1,
解得z=$\frac{3}{4}$,
故z=$\frac{y}{x-2}$的最小值为$\frac{3}{4}$;
故答案为:$\frac{3}{4}$.

点评 本题主要考查线性规划的应用,利用直线和圆的位置关系,以及z的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.0<x<$\frac{1}{3}$,函数y=x(1-3x)的最大值为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-ax2-bx.当a=-1时,若函数f(x)在其定义域内是增函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设复数z=a+bi(a,b∈R,a>0,i是虚数单位),且复数z满足|z|=$\sqrt{10}$,复数(1+2i)z在复平面上对应的点在第一、三象限的角平分线上.
(1)求复数z;
(2)若$\overline z+\frac{m-i}{1+i}$为纯虚数(其中m∈R,$\overline z=a-bi$),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,直线l的参数方程为:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(Ⅰ)求曲线C的平面直角坐标方程;
(Ⅱ)设直线l与曲线C交于点M,N,若点P的坐标为(1,0),求点P与MN中点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{1}{x}$-x的图象只可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC中,∠A=$\frac{π}{6}$,AB=3$\sqrt{3}$,AC=3,在线段BC上任取一点P,则线段PB的长大于2的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设x,y∈R,且x>0,y>0,则$({x^2}+\frac{1}{y^2})(\frac{1}{x^2}+4{y^2})$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{1,x<0}\end{array}\right.$.则不等式f(x2)>f(3-2x)的解集为(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,-3)∪(1,+∞)C.(-∞,-3)∪($\frac{1}{2}$,+∞)D.(-∞,-1)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案