分析 根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.
解答 解:分2步进行分析:
1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,
2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,
分2种情况讨论:
①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,
排好后,最后1个小品类节目放在2端,有2种情况,
此时同类节目不相邻的排法种数是6×4×2=48种;
②将中间2个空位安排2个小品类节目,有A22=2种情况,
排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,
此时同类节目不相邻的排法种数是6×2×6=72种;
则同类节目不相邻的排法种数是48+72=120,
故答案为:120.
点评 本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | C${\;}_{12}^{10}$($\frac{3}{8}$)10($\frac{5}{8}$)2 | B. | C${\;}_{12}^{9}$($\frac{3}{8}$)9($\frac{5}{8}$)2($\frac{3}{8}$) | C. | C${\;}_{11}^{9}$($\frac{5}{8}$)9($\frac{3}{8}$)2 | D. | C${\;}_{11}^{9}$($\frac{3}{8}$)10($\frac{5}{8}$)2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.2386 | B. | 0.2718 | C. | 0.3413 | D. | 0.4772 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com