精英家教网 > 高中数学 > 题目详情
射手在一次射击训练中,射中10环、9环、8环、7环概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:
(1)射中10环或9环的概率;
(2)少于7环的概率.
考点:互斥事件的概率加法公式
专题:计算题,概率与统计
分析:(1)利用互斥事件的定义,判断出几个事件是互斥事件,利用互斥事件的概率公式求出待求事件的概率.
(2)利用对立事件的定义判断出“少于7环”与“射中7环或8环或9环或10环””为对立事件,利用对立事件的概率公式求出概率.
解答: 解:(1)记:“射中10环”为事件A,记“射中9环”为事件B,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.
“射中10环或9环”的事件为A+B,
故P(A+B)=P(A)+P(B)=0.21+0.23=0.44.
所以射中10环或9环的概率为0.44.
(2)记“少于7环”为事件E,则事件
.
E
为“射中7环或8环或9环或10环”,
∴P(
.
E
)=0.21+0.23+0.25+0.28=0.97,
从而P(E)=1-P(
.
E
)=1-0.97=0.03.
∴少于7环的概率为0.03.
点评:本题考查利用互斥事件、对立事件的定义判断事件的特殊关系;互斥事件、对立事件的概率公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|-1<x<2},B={x|m<x<m+8}.
(1)若A⊆B,求实数m的取值范围;
(2)若A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x2-2x|(x∈R).
(1)在区间[-2,3]上画出函数f(x)的图象;
(2)根据图象写出该函数在[-2,3]上的单调区间;
(3)方程f(x)=a有两个不同的实数根,求a的取值范围.(只写答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足Sn=2an-2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
2
cosx-
6
sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=AD=
1
2
AB=a,点E、F分别为PA、PC的中点.
(Ⅰ)求证:EF∥平面ABCD; 
(Ⅱ)求四棱锥P-ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB=3,bsinA=4.
(1)求边长a;
(2)若△ABC的面积S=10,求△ABC的周长l.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-3x+1,g(x)=Asin(x-
π
6
)(A≠0).
(1)当0≤x≤
π
2
时,求y=f(sinx)的最大值;
(2)问a取何值时,方程f(sinx)=a-sinx在[0,2π)上有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1,P为直线BC1上一动点,则下列四个命题:
①三棱锥A-D1PC的体积为定值;
②直线AP与平面ACD1所成角的大小为定值;
③二面角P-AD1-C的大小为定值;
④异面直线A1D与D1P所成角的大小为定值.
其中真命题的编号是
 
.(写出所有真命题的编号)

查看答案和解析>>

同步练习册答案