| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}$-1 | D. | 1+$\sqrt{3}$ |
分析 连结AF1,根据圆的直径的性质和等边三角形的性质,证出△F1AF2是含有30°角的直角三角形,由此得到|F1A|=c且|F2A|=$\sqrt{3}$c.再利用双曲线的定义,得到2a=|F2A|-|F1A|=( $\sqrt{3}$-1)c,即可算出该双曲线的离心率.
解答
解:连结AF1,
∵F1F2是圆O的直径,
∴∠F1AF2=90°,即F1A⊥AF2,
又∵△F2AB是等边三角形,F1F2⊥AB,
∴∠AF2F1=$\frac{1}{2}$∠AF2B=30°,
因此,Rt△F1AF2中,|F1F2|=2c,|F1A|=$\frac{1}{2}$|F1F2|=c,
|F2A|=$\frac{\sqrt{3}}{2}$|F1F2|=$\sqrt{3}$c.
根据双曲线的定义,得2a=|F2A|-|F1A|=($\sqrt{3}$-1)c,
解得c=($\sqrt{3}$+1)a,
∴双曲线的离心率为e=$\frac{c}{a}$=$\sqrt{3}$+1.
故选:D.
点评 本题给出以双曲线焦距F1F2为直径的圆交双曲线于A、B两点,在△F2AB是等边三角形的情况下求双曲线的离心率.着重考查了双曲线的定义、标准方程与简单几何性质等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2π}$ | B. | $\frac{\sqrt{2}}{2π}$ | C. | $\frac{\sqrt{3}}{2π}$ | D. | $\frac{1}{π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{6}$ | C. | $\frac{3}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com