精英家教网 > 高中数学 > 题目详情
7.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=4,则双曲线的离心率为(  )
A.$\sqrt{2}+1$B.$2({\sqrt{2}+1})$C.$\sqrt{2}$D.$2\sqrt{2}$

分析 求出抛物线的焦点坐标,然后求解P的坐标,利用焦半径公式求出a,求解双曲线的离心率即可.

解答 解:抛物线y2=8x的焦点F(2,0),两曲线的一个交点为P,
若|PF|=4,则P(2,4)或(2,-4),
可得:$\frac{{b}^{2}}{a}=4$,即:$\frac{4-{a}^{2}}{a}=4$,解得a=2$\sqrt{2}-2$,
解得双曲线的离心率为:$\frac{c}{a}$=$\frac{2}{2\sqrt{2}-2}$=$\sqrt{2}+1$.
故选:A.

点评 本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.如图,M、N分别是四面体OABC的棱AB与OC的中点,已知向量$\overrightarrow{MN}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则xyz=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知球的直径为4,则该球的表面积积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.cos(-480°)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A.B两点.若AB的中点坐标为(1,-$\frac{\sqrt{5}}{5}$),则E的方程为(  )
A.$\frac{{x}^{2}}{10}$+y2=1B.$\frac{{x}^{2}}{19}$+$\frac{{y}^{2}}{10}$=1C.$\frac{{x}^{2}}{27}$+$\frac{{y}^{2}}{18}$=1D.$\frac{{x}^{2}}{18}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${4^{\frac{1}{2}}}+{log_3}$9=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的几何体中,A1B1C1-ABC是直三棱柱,四边形ABDC是梯形,AB∥CD,且$AB=BD=\frac{1}{2}CD=2$,∠BDC=60°,E是C1D的中点.
(Ⅰ)求证:AE∥平面BB1D;
(Ⅱ)当AE与平面ABCD所成角的正切值为$\frac{1}{2}$时,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知幂函数f(x)=xα,其中$α∈\{-2,-1,\frac{1}{2},1,2,3\}$,则使f(x)为奇函数,且在区间(0,+∞)上是单调增函数的α的所有值为1,3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的各项均为不等的正整数,其前n项和为Sn,我们成满足条件“对任意的m,n∈N*,均有(n-m)Sm+n=(m+n)(Sn-Sm)”的数列{an}为“好”数列.
(1)试判断数列{an},{bn}是否为“好”数列,其中${a_n}=2n-1,{b_n}={2^{n-1}},n∈{N^*}$,并给出证明.
(2)已知数列{cn}为“好”数列.
①c2016=2017,求数列的通项公式;
②若c1=p,且对任意的给定正整数p,s(s>1),有c1,cs,ct成等比数列,求证:t≥s2

查看答案和解析>>

同步练习册答案