精英家教网 > 高中数学 > 题目详情
14.随着大数据统计的广泛应用,给人们的出行带来了越来越多的方便.郭叔一家计划在8月11日至8月20日暑假期间游览上海Disney主题公园.通过上网搜索旅游局的统计数据,该Disney主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%-60%为一般,60%以上为拥挤)情况如图所示.郭叔预计随机的在8月11日至8月19日中的某一天到达该主题公园,并游览2天.

(Ⅰ)求郭叔连续两天都遇上拥挤的概率;
(Ⅱ)设X是郭叔游览期间遇上舒适的天数,求X的分布列和数学期望;
(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(直接写出结论不要求证明,计算)

分析 (I)设Ai表示第i天开始游览公园,则连续两天拥挤的概率为P(A4)+P(A7);
(II)根据图表计算各种情况的可能性,得出分布列;
(III)当连续三天的舒服度相差最大时,方差最大.

解答 解:设Ai表示事件“郭叔8月11日起第i日连续两天游览主题公园”(i=1,2,…,9).
根据题意,$P({A_i})=\frac{1}{9}$
(Ⅰ)设B为事件“郭叔连续两天都遇上拥挤”,则B=A4∪A7
所以$P(B)=P({A_4}∪{A_7})=P({A_4})+P({A_7})=\frac{2}{9}$.
(Ⅱ)X的所有可能取值为0,1,2,
$P(X=0)=P({A_4}∪{A_7}∪{A_8})=P({A_4})+P({A_7})+P({A_8})=\frac{1}{3}$,
$P(X=1)=P({A_3}∪{A_5}∪{A_6}∪{A_9})=P({A_3})+P({A_5})+P({A_6})+P({A_9})=\frac{4}{9}$,
$P(X=2)=P({A_1}∪{A_2})=P({A_1})+P({A_2})=\frac{2}{9}$.
所以X的分布列为:

X012
P$\frac{1}{3}$$\frac{4}{9}$$\frac{2}{9}$
故X的期望$EX=0×\frac{1}{3}+1×\frac{4}{9}+2×\frac{2}{9}=\frac{8}{9}$.
(Ⅲ)有图可知,8月12,8月13,8月14连续三天游览舒适度的方差最大.

点评 本题考查了离散型随机变量的分布列,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.斜率为2的直线l与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于不同的两点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:
①一次性缴纳50万元,可享受9折优惠;
②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.
请通过计算,帮助王亮同学判断那种方案交纳的保费较低.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=alnx+x2-1(a∈R).
(1)若a=-1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)≥b(x-1)(b∈R)对任意x∈[$\frac{1}{e}$,+∞)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sinα+cosα=$\sqrt{2}$,求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线${x}^{2}-\frac{{y}^{2}}{3}=1$的离心率为$\frac{m}{2}$,且抛物线y2=mx的焦点为F,点P(3,y0)(y0>0)在此抛物线上,M为线段PF的中点,则点M到该抛物线的准线的距离为(  )
A.3B.2C.$\frac{5}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mex-lnx-1.
(1)当m=1,x∈[1,+∞)时,求y=f(x)的值域;
(2)当m≥1时,证明:f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-2x+alnx(a>0)
(Ⅰ)当a=1时,试求函数图象过点(1,f(1))的切线方程;
(Ⅱ)当a=2时,若关于x的方程f(x)=3x+b有唯一实数解,试求实数b的取值范围;
(Ⅲ)若函数f(x)有两个极值点x1、x2(x1<x2),且不等式f(x1)>mx2恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E是CC1上的中点,且BC=1,BB1=2.
(Ⅰ)证明:B1E⊥平面ABE
(Ⅱ)若三棱锥A-BEA1的体积是$\frac{{\sqrt{3}}}{3}$,求异面直线AB和A1C1所成角的大小.

查看答案和解析>>

同步练习册答案