精英家教网 > 高中数学 > 题目详情
16.已知直线l的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t为参数,$\frac{π}{2}≤α<π$),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.
(Ⅰ)讨论直线l与圆C的公共点个数;
(Ⅱ)过极点作直线l的垂线,垂足为P,求点P的轨迹与圆C相交所得弦长.

分析 (Ⅰ)直线l为过定点A(0,1),倾斜角在$[{\frac{π}{2},π})$内的一条直线,圆C的方程为(x-1)2+y2=1,即可讨论直线l与圆C的公共点个数;
(Ⅱ)过极点作直线l的垂线,垂足为P,联立$\left\{\begin{array}{l}ρ=2cosθ\\ ρ=sinθ({0≤θ<\frac{π}{2}})\end{array}\right.$得$ρ=\frac{{2\sqrt{5}}}{5}$,即可求点P的轨迹与圆C相交所得弦长.

解答 解:(Ⅰ)直线l为过定点A(0,1),倾斜角在$[{\frac{π}{2},π})$内的一条直线,
圆C的方程为(x-1)2+y2=1,∴当$α=\frac{π}{2}$时,直线l与圆C有1个公共点;
当$\frac{π}{2}<α<π$时,直线l与圆C有2个公共点
(Ⅱ)依题意,点P在以OA为直径的圆上,可得轨迹极坐标方程为$ρ=sinθ({0≤θ<\frac{π}{2}})$.
联立$\left\{\begin{array}{l}ρ=2cosθ\\ ρ=sinθ({0≤θ<\frac{π}{2}})\end{array}\right.$得$ρ=\frac{{2\sqrt{5}}}{5}$.
∴点P的轨迹与圆C相交所得弦长是$\frac{{2\sqrt{5}}}{5}$.

点评 本题考查极坐标方程的运用,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-3),若m$\overrightarrow{a}$+$\overrightarrow{b}$与3$\overrightarrow{a}$-$\overrightarrow{b}$共线,则实数m=(  )
A.-3B.3C.-$\frac{25}{19}$D.$\frac{25}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设等差数列{an}的各项都是正数,前n项和为Sn,公差为d.若数列$\left\{{\sqrt{S_n}}\right\}$也是公差为d的等差数列,则{an}的通项公式为an=$\frac{2n-1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.
(Ⅰ)求证:AB⊥平面ADC;
(Ⅱ)若AD=1,AB=$\sqrt{2}$,求二面角B-AD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若P是抛物线y2=8x上的动点,点Q在以点C(2,0)为圆心,半径长等于1的圆上运动.则|PQ|+|PC|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}是等差数列,且a1,a2(a1<a2)分别为方程x2-6x+5=0的二根.
(1)求数列{an}的前n项和Sn
(2)在(1)中,设bn=$\frac{S_n}{n+c}$,求证:当c=-$\frac{1}{2}$时,数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\frac{{a{x^3}}}{3}-b{x^2}+{a^2}x-\frac{1}{3}$在x=1处取得极值为0,则a+b=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC 边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体
(Ⅰ)求证:AB⊥平面ADC;
(Ⅱ)若AD=1,AB=$\sqrt{2}$,求点B到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则$\overrightarrow{a}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案