分析 由题意可得:Sn=na1+$\frac{n(n-1)}{2}$d.an>0.$\sqrt{{S}_{n}}$=$\sqrt{{a}_{1}}$+(n-1)d,化简n≠1时可得:a1=(n-1)d2+2$\sqrt{{a}_{1}}$d-$\frac{n}{2}$d.分别令n=2,3,解出即可得出.
解答 解:由题意可得:Sn=na1+$\frac{n(n-1)}{2}$d.an>0.
$\sqrt{{S}_{n}}$=$\sqrt{{a}_{1}}$+(n-1)d,可得:Sn=a1+(n-1)2d2+2$\sqrt{{a}_{1}}$(n-1)d.
∴na1+$\frac{n(n-1)}{2}$d=a1+(n-1)2d2+2$\sqrt{{a}_{1}}$(n-1)d.
n≠1时可得:a1=(n-1)d2+2$\sqrt{{a}_{1}}$d-$\frac{n}{2}$d.
分别令n=2,3,可得:a1=d2+2$\sqrt{{a}_{1}}$d-d,a1=2d2+2$\sqrt{{a}_{1}}$d-$\frac{3}{2}$d.
解得a1=$\frac{1}{4}$,d=$\frac{1}{2}$.
∴an=$\frac{1}{4}$+$\frac{1}{2}$(n-1)=$\frac{2n-1}{4}$.
故答案为:$\frac{2n-1}{4}$.
点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 一孩 | 二孩 | 合计 | |
| 人民医院 | |||
| 博爱医院 | |||
| 合计 |
| P(k2>k0) | 0.4 | 0.25 | 0.15 | 0.10 |
| k0 | 0.708 | 1.323 | 2.072 | 2.706 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com