精英家教网 > 高中数学 > 题目详情
19.已知角α的顶点在原点,始边与x轴的非负半轴重合,终边交以原点为圆心的单位圆于点A,将角α的终边按逆时针方向旋转$\frac{π}{6}$后交此单位圆于点B,记A(x1,y1),B(x2,y2),若A(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则x2的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

分析 先求出角α,再求出旋转后的角,利用三角函数的定义,即可求出x2的值.

解答 解:∵A(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),∴α=2kπ+$\frac{2}{3}π$,(k∈Z).
∵将角α的终边按逆时针方向旋转$\frac{π}{6}$后交此单位圆于点B,
∴旋转后的角为2kπ+$\frac{5}{6}π$,(k∈Z).
∴x2=-$\frac{\sqrt{3}}{2}$.
故选:A.

点评 本题考查三角函数的定义,考查学生的计算能力,确定旋转后的角是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.等差数列{an}中,a1+a4+a7=48,a2+a5+a8=40,则a3+a6+a9的值是(  )
A.30B.32C.34D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若平面α,β的法向量分别为$\overrightarrow{n_1}$=(2,-3,5),$\overrightarrow{n_2}$=(-3,1,2),则(  )
A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=tan(2x+$\frac{π}{3}$),则(  )
A.函数最小正周期为π,且在(-$\frac{5π}{12}$,$\frac{π}{12}$)是增函数
B.函数最小正周期为$\frac{π}{2}$,且在(-$\frac{5π}{12}$,$\frac{π}{12}$)是减函数
C.函数最小正周期为π,且在($\frac{π}{12}$,$\frac{7π}{12}$)是减函数
D.函数最小正周期为$\frac{π}{2}$,且在($\frac{π}{12}$,$\frac{7π}{12}$)是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.sin810°+cos(-60°)=(  )
A.$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{2-\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.sin40°cos20°-cos220°sin20°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,某村积极开展“美丽乡村•生态家园”建设,现拟在边长为1千米的正方形地块ABCD上划出一片三角形地块CMN建设美丽乡村生态公园,给村民休闲健身提供去处.点M,N分别在边AB,AD上.
(Ⅰ)当点M,N分别是边AB,AD的中点时,求∠MCN的余弦值;
(Ⅱ)由于村建规划及保护生态环境的需要,要求△AMN的周长为2千米,请探究∠MCN是否为定值,若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$(n∈N*).
(1)求a2,a3,a4,猜想数列{an}的通项公式;
(2)根据(1)中的猜想,用三段论证明数列$\left\{{\frac{1}{a_n}}\right\}$是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为检验寒假学生自主学生的效果,级部对某班50名学生各科的检测成绩进行了统计,下面是物理成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中的x值及平均成绩;
(2)从分数在[70,80)中选5人记为a1,a2,…,a5,从分数在[40,50)中选3人,记为b1,b2,b3,8人组成一个学习小组现从这5人和3人中各选1人做为组长,求a1被选中且b1未被选中的概率.

查看答案和解析>>

同步练习册答案