精英家教网 > 高中数学 > 题目详情
9.为检验寒假学生自主学生的效果,级部对某班50名学生各科的检测成绩进行了统计,下面是物理成绩的频率分布直方图,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中的x值及平均成绩;
(2)从分数在[70,80)中选5人记为a1,a2,…,a5,从分数在[40,50)中选3人,记为b1,b2,b3,8人组成一个学习小组现从这5人和3人中各选1人做为组长,求a1被选中且b1未被选中的概率.

分析 (1)由频率分布直方图的性质能求出x及平均成绩.
(2)从这5人和3人中各选1人做为组长,先求出基本事件总数,再求出a1被选中且b1未被选中包含的基本事件个数,由此能求出a1被选中且b1未被选中的概率.

解答 解:(1)由频率分布直方图的性质得:
(0.006×3+0.01+x+0.054)×10=1,
解得x=0.018.
平均成绩$\overline{x}$=45×0.006×10+55×0.006×10+65×0.01×10+75×0.054×10+85×0.018×10+95×0.006×10=74.
(2)从分数在[70,80)中选5人记为a1,a2,…,a5
从分数在[40,50)中选3人,记为b1,b2,b3,8人组成一个学习小组,
现从这5人和3人中各选1人做为组长,
基本事件总数n=5×3=15,
a1被选中且b1未被选中包含的基本事件个数m=1×2=2,
∴a1被选中且b1未被选中的概率p=$\frac{m}{n}$=$\frac{2}{15}$.

点评 本题考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知角α的顶点在原点,始边与x轴的非负半轴重合,终边交以原点为圆心的单位圆于点A,将角α的终边按逆时针方向旋转$\frac{π}{6}$后交此单位圆于点B,记A(x1,y1),B(x2,y2),若A(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则x2的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A={(x,y)||x|≤1,|y|≤1},B是曲线$y=\sqrt{1-{{({x-1})}^2}}$围成的封闭区域,若向区域A上随机投一点P,则点P落入区域B的概率为(  )
A.$\frac{π}{4}$B.$\frac{π}{16}$C.$\frac{π}{2}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3+a是奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)求证:f(x)是(-∞,+∞)上的增函数;
(Ⅲ)若对任意的θ∈R,不等式f(sin2θ-msinθ)+f(2sinθ-3)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等差数列{an},a1=1,a2=2,则a3=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.直线y=x+m与双曲线2x2-y2=2交于A,B两点,若以AB为直径的圆过原点,求m的值及弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2014)+f(2015)的值为(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平行四边形ABCD中O是对角线交点,E是OD中点,连接AE交CD于F,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,则用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AF}$=$-\frac{4}{3}\overrightarrow{a}-\frac{2}{3}\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知复数z满足|z|=2,且ω=z2-z+4,试求|ω|的最值及取得最值时的复数z.

查看答案和解析>>

同步练习册答案