精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\sqrt{3}$cos($\frac{π}{2}$-2x)-2cos2x+1
(1)求f(x)的最小正周期;
(2)将f(x)的图象沿x轴向左平移m(m>0)个单位,所得函数g(x)的图象关于直线x=$\frac{π}{8}$对称,求m的最小值及m最小时g(x)在[0,$\frac{π}{4}$]上的值域.

分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x-$\frac{π}{6}$),利用正弦函数的周期公式即可计算得解.
(2)利用三角函数的图象变换规律可求g(x)=2sin(2x+2m-$\frac{π}{6}$),由于题意,可求$\frac{π}{4}$+2m-$\frac{π}{6}$=$\frac{π}{2}$+2kπ,k∈Z,结合m>0,可求m的最小值,进而结合x的范围,利用正弦函数的图象和性质可求其值域.

解答 解:(1)f(x)=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),
∴T=$\frac{2π}{2}$=π,
(2)∵g(x)=2sin(2x+2m-$\frac{π}{6}$),图象关于直线x=$\frac{π}{8}$对称,
∴$\frac{π}{4}$+2m-$\frac{π}{6}$=$\frac{π}{2}$+2kπ,k∈Z,
∴m=kπ+$\frac{5π}{24}$,k∈Z,
∴mmin=$\frac{5π}{24}$,此时,g(x)=2sin(2x+$\frac{π}{4}$),
又∵x∈[0,$\frac{π}{4}$],
∴2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
∴g(x)∈[$\sqrt{2}$,2].

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的周期公式,三角函数的图象变换规律,正弦函数的图象和性质,考查了计算能力和数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,2a4=a6-a5,则公比q=2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在直角△ABC中,∠BCA=90°,CA=CB=1,P为AB边上的点$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,若$\overrightarrow{CP}•\overrightarrow{AB}≥\overrightarrow{PA}•\overrightarrow{PB}$,则λ的最小值是(  )
A.1B.$\frac{{2-\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l:x-$\sqrt{3}$y+2=0与圆x2+y2=4交于A,B两点,则$\overrightarrow{AB}$在x轴正方向上投影的绝对值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=logax(x>0)且a≠1)的图象经过点(2$\sqrt{2}$,-1),函数y=bx(b>0)且b≠1)的图象经过点(1,2$\sqrt{2}$),则下列关系式中正确的是(  )
A.a2>b2B.2a>2bC.($\frac{1}{2}$)a>($\frac{1}{2}$)bD.a${\;}^{\frac{1}{2}}$>b${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2-$\frac{1}{2}$x+c(a,c∈R)满足条件:①f(1)=0;②对一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5,求出实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的偶函数f(x)满足f(x+4)=f(x)+f(2),且当x∈[0,2]时函数f(x)单调递减,给出下列四个命题中正确的是①②④.
①f(2)=0;
②x=-4为函数f(x)的一条对称轴;
③函数f(x)在[8,10]上单调递增;
④若方程f(x)=m在区间[-6,-2]上的两根为x1,x2,则x1+x2=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数定义域(结果用集合或区间表示):
(1)$y=\frac{{\sqrt{x-4}}}{|x|-5}$
(2)y=loga(2-x)(a>0且a≠1)
(3)$y=\sqrt{1-{{({\frac{1}{2}})}^x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,F1,F2是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右两焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q是线段PF2的中点,则${\frac{{{a^2}+{e^2}}}{3b}^{\;}}$(e为椭圆的离心率)的最小值为$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步练习册答案