分析 (1)利用线面平行的判定与性质,证明DE∥FG;
(2)由(1)知,F为棱PA的中点,G为棱PB的中点,利用三棱锥G-PEF的体积=$\frac{1}{2}$VB-PEF=$\frac{1}{2}×\frac{1}{2}×{V}_{B-PEA}$=$\frac{1}{4}×{V}_{P-BEA}$,即可求三棱锥G-PEF的体积.
解答 (1)证明:∵AB∥DE,AB?平面PAB,DE?平面PAB,
∴DE∥平面PAB,
∵DE?α,α∩平面PAB=FG,
∴DE∥FG;
(2)解:由(1)知,F为棱PA的中点,G为棱PB的中点,
∴三棱锥G-PEF的体积=$\frac{1}{2}$VB-PEF=$\frac{1}{2}×\frac{1}{2}×{V}_{B-PEA}$=$\frac{1}{4}×{V}_{P-BEA}$=$\frac{1}{4}×\frac{1}{3}{S}_{△BEA}×PE$
=$\frac{1}{4}×\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{1}{3}$.
点评 本题考查线面平行的判定与性质,考查三棱锥G-PEF的体积,正确运用线面平行的判定与性质是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com