精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且$\overrightarrow{a}$=(-2,-4),|$\overrightarrow{b}$|=$\sqrt{5}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=-5.

分析 由题意可得|$\overrightarrow{a}$|=2$\sqrt{5}$,由数量积的定义代值计算可得.

解答 解:∵$\overrightarrow{a}$=(-2,-4),
∴|$\overrightarrow{a}$|=$\sqrt{(-2)^{2}+(-4)^{2}}$=2$\sqrt{5}$,
又∵$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°,且|$\overrightarrow{b}$|=$\sqrt{5}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos120°
=2$\sqrt{5}$×$\sqrt{5}$×(-$\frac{1}{2}$)=-5
故答案为:-5

点评 本题考查平面向量数量积的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax+b,当x=-2时,f(x)有极大值18.
(1)求a,b的值;
(2)求函数y=f (x)在[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知抛物线y2=4x的焦点为F,过F的直线与抛物线交于A(x1,x2),B(x2,y2)两点,则y12+y22的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,某工业园区有一边长为2(单位:千米)的正方形地块OABC,其中OCE(阴影部分)是一个已建工厂,计划在地块OABC内修一条与曲边OE相切的直路l(宽度不计),切点为P,直线l把该地块分为两部分,已知曲线段OE是以点O为顶点,OC为对称轴且开口向上的抛物线的一段,CE=$\sqrt{2}$.
(1)建立适当的坐标系,求曲线段OE的方程;
(2)在(1)的条件下设点P到边OC的距离为t.
(i)当t=1时,求直路l所在的直线方程;
(ii)若$\frac{6}{5}$≤t$≤\frac{4}{3}$,试问当t为何值时,地块OABC在直路l不含已建工厂那侧的面积取到最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=4x,直线y=x-1,求直线与抛物线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个正方体的外接球,与各条棱相切的球,内切球这三个球的体积比为3$\sqrt{3}$:2$\sqrt{2}$:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数a是常数,f(x)=(x+a)2-3ln(x+1)-5,当x>0时,f(x)是增函数,求a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-$\frac{1}{x}$,g(x)=ax+b.
(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若直线g(x)=ax+b是函数f(x)=lnx-$\frac{1}{x}$图象的切线,求a+b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C的中心在原点,焦点在坐标轴上,P(1,2)是双曲线C上点,且y=$\sqrt{2}$x是C的一条渐近线,则C的方程为(  )
A.2x2-$\frac{{y}^{2}}{2}$=1B.$\frac{{y}^{2}}{2}$-x2=1
C.$\frac{{y}^{2}}{2}$-x2=1或2x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{y}^{2}}{2}$-x2=1或x2-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

同步练习册答案