精英家教网 > 高中数学 > 题目详情
5.某大学餐饮中心对全校一年级新生饮食习惯进行抽样调查,结果为:南方学生喜欢甜品的有60人,不喜欢甜品的有20人;北方学生喜欢甜品的有10人,不喜欢甜品的有10人.问有95%把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.050.010.005
k02.7063.8416.6357.879

分析 列出2×2列联表,根据表中数据,利用公式,即可得出结论.

解答 解:由题意,2×2列联表如下表所示:

喜欢甜品不喜欢甜品合计
南方学生602080
北方学生101020
合计7030100
K2=$\frac{100×(60×10-20×10)^{2}}{70×30×80×20}$≈4.762>3.841,
∴有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.
故答案为:95.

点评 本题考查独立性检验的应用,考查学生的计算能力,正确运用公式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=3上,圆弧C1的圆心是坐标原点O,半径为5,圆弧C2过点A(-1,0).
(1)求圆弧C2的方程;
(2)曲线C上是否存在点P,满足PA=$\frac{{\sqrt{2}}}{2}$PO?若存在,指出有几个这样的点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.正三棱柱的底面边长为$\sqrt{3}$,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(  )
A.60B.75C.105D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{{\begin{array}{l}{x+2,(x<0)}\\{{3^{x+1}},(x≥0)}\end{array}}$,则f[f(-2)]=(  )
A.3B.1C.0D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知平面向量$\overrightarrow a$=(-6,2),$\overrightarrow b$=(3,m),若$\overrightarrow a$⊥$\overrightarrow b$,则m的值为(  )
A.-9B.-1C.1D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a+b=1,a>0,b>0.
(1)求$\frac{1}{a}$+$\frac{4}{b}$的最小值;
(2)若不等式$\frac{1}{a}$+$\frac{4}{b}$≥|2m-3|对任意a,b恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.世界华商大会的某分会场有A,B,C,将甲,乙,丙,丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,求解其中甲,乙两人被分配到同一展台的不同分法种数?
解题分析步骤如下:
(1)要求甲乙被分到一个展台,可以把甲乙捆绑在一起,采用整体法,看成一个板块;
(2)甲乙一个板块和剩下的丙、丁一共可 看成3个板块;
(3)之后对这几个板块进行全排练.
(4)最后可得出不同分法总数为6.

查看答案和解析>>

同步练习册答案