精英家教网 > 高中数学 > 题目详情
14.已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.

分析 (1)利用等差数列、等比数列的通项公式先求得公差和公比,即可求数列的通项公式;
(2)利用分组求和的方法求解数列的和,由等差数列及等比数列的前n项和公式即可求解数列的和.

解答 解:(1)设等差数列{an}的公差为d,由题意得
d=$\frac{{{a_4}-{a_1}}}{3}$=$\frac{12-3}{3}$=3.
∴an=a1+(n-1)d=3n(n=1,2,…).
∴数列{an}的通项公式为:an=3n;
设等比数列{bn-an}的公比为q,由题意得:
q3=$\frac{{{b_4}-{a_4}}}{{{b_1}-{a_1}}}$=$\frac{20-12}{4-3}$=8,解得q=2.
∴bn-an=(b1-a1)qn-1=2n-1
从而bn=3n+2n-1(n=1,2,…).
∴数列{bn}的通项公式为:bn=3n+2n-1
(2)由(1)知bn=3n+2n-1(n=1,2,…).
数列{3n}的前n项和为$\frac{3}{2}$n(n+1),数列{2n-1}的前n项和为$\frac{{1-{2^n}}}{1-2}$=2n-1.
∴数列{bn}的前n项和为$\frac{3}{2}$n(n+1)+2n-1.

点评 本题考查了等差数列、等比数列的通项公式,考查了利用分组求和的方法求解数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某空间几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某大学餐饮中心对全校一年级新生饮食习惯进行抽样调查,结果为:南方学生喜欢甜品的有60人,不喜欢甜品的有20人;北方学生喜欢甜品的有10人,不喜欢甜品的有10人.问有95%把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.050.010.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.五名学生(2名女生3名男生)照相,则女生都互不相邻有多少种不同的排法?(  )
A.12B.48C.72D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.方程$\sqrt{{x^2}+{{(y+3)}^2}}$+$\sqrt{{x^2}+{{(y-3)}^2}}$=10所表示曲线的图形是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列哪个函数是奇函数(  )
A.f(x)=3x3+2x2+1B.f(x)=${x^{-\frac{1}{2}}}$C.f(x)=3xD.f(x)=$\frac{{\sqrt{4-{x^2}}}}{{|{x+3}|-3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知c=$\sqrt{3}$,b=1,B=30°,则A等于(  )
A.30°B.90°C.30°或90°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,tanA是以-4为第三项,4为第七项的等差数列的公差,tanB是以2为公差,9为第五项的等差数列的第二项,则这个三角形是(  )
A.锐角三角形B.钝角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:相交两圆的公共弦的延长线上任一点到两圆所作的切线长相等.

查看答案和解析>>

同步练习册答案