精英家教网 > 高中数学 > 题目详情
5.若方程x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,则$\frac{b-a}{a-1}$的取值范围是(-1,-$\frac{1}{2}$).

分析 设f(x)=x2+ax+2b,根据二次函数的性质与零点存在性定理可得f(0)>0、f(1)<0且f(2)>0.由此建立关于a、b的二元一次不等式组,设点E(a,b)为区域内的任意一点,则$\frac{b-a}{a-1}$=$\frac{b-1}{a-1}$-1,k=$\frac{b-1}{a-1}$,根据直线的斜率公式可得k=$\frac{b-1}{a-1}$,表示D(1,1)、E连线的斜率,将点E在区域内运动并观察直线的倾斜角的变化,即可算出$\frac{b-a}{a-1}$的取值范围.

解答 解:设f(x)=x2+ax+2b,
∵方程x2+ax+2b=0的一个根在区间(0,1)内,另一个根在区间(1,2)内,
∴可得$\left\{\begin{array}{l}{b>0}\\{a+2b+1<0}\\{a+b+2>0}\end{array}\right.$.
作出满足上述不等式组对应的点(a,b)所在的平面区域,
得到△ABC及其内部,即如图所示的阴影部分(不含边界).
其中A(-3,1),B(-2,0),C(-1,0),

设点E(a,b)为区域内的任意一点,
则$\frac{b-a}{a-1}$=$\frac{b-1}{a-1}$-1,k=$\frac{b-1}{a-1}$,表示点E(a,b)与点D(1,1)连线的斜率
结合图形可知:0<k<$\frac{1}{2}$,
∴$\frac{b-a}{a-1}$的取值范围是(-1,-$\frac{1}{2}$).
故答案为:(-1,-$\frac{1}{2}$).

点评 本题给出含有参数a、b的一元二次方程满足的条件,求参数a、b满足的不等式组,并依此求关于a、b式子的取值范围.着重考查了二次函数的性质、零点存在性定理、二元一次不等式组表示的平面区域、直线的斜率公式与两点间的距离公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若复数z=x+yi(x,y∈R+,i为虚数单位)满足z-$\frac{6}{z}$是纯虚数,则|z|=(  )
A.0B.$\sqrt{6}$C.6D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且|$\overrightarrow{a}$+k$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|,其中k>0.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求k的值;
(2)记f(k)=$\overrightarrow{a}$•$\overrightarrow{b}$,是否存在实数x,使得f(k)≥1-tx对任意的t∈[-1,1]恒成立?若存在,求出实数x的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知离心率为e的双曲线和离心率为$\frac{{\sqrt{2}}}{2}$的椭圆有相同的焦点F1,F2,P是两曲线的一个公共点,若∠F1PF2=$\frac{π}{3}$,则e等于(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{6}}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.写出:(1)从4个不同元素中任取2个元素的所有排列;
(2)从5个不同元素中任取2个元素的所有排列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,CD是圆O的切线,切点为C,点B在圆O上,BC=2$\sqrt{3}$,∠BCD=60°,则圆O的面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在长方体ABCD-A′B′C′D′中,下列正确的是(  )
A.平面ABCD∥平面ABB′A′B.平面ABCD∥平面ADD′A′
C.平面ABCD∥平面CDD′C′D.平面ABCD∥平面A′B′C′D′

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知双曲线的中心在原点,焦点在x轴上,离心率为3,并且经过点M(-3,8),求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.A、B是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上两点,C、D是椭圆左右焦点,AB过D点,则△ABC的周长为20.

查看答案和解析>>

同步练习册答案