16£®ÒÑÖª$\overrightarrow{a}$¡¢$\overrightarrow{b}$£¬|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬ÇÒ|$\overrightarrow{a}$+k$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|£¬ÆäÖÐk£¾0£®
£¨1£©Èô$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬ÇókµÄÖµ£»
£¨2£©¼Çf£¨k£©=$\overrightarrow{a}$•$\overrightarrow{b}$£¬ÊÇ·ñ´æÔÚʵÊýx£¬Ê¹µÃf£¨k£©¡Ý1-tx¶ÔÈÎÒâµÄt¡Ê[-1£¬1]ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öʵÊýxµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÐÔÖÊ£ºÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬½â·½³Ì¼´¿ÉµÃµ½kµÄÖµ£»
£¨2£©Çó³öf£¨k£©£¬ÔÙÓÉÖØÒª²»µÈʽÇóµÃf£¨k£©µÄ×îСֵ£¬¼ÙÉè´æÔÚʵÊýx£¬Ê¹µÃf£¨k£©¡Ý1-tx¶ÔÈÎÒâµÄt¡Ê[-1£¬1]ºã³ÉÁ¢£¬¹¹ÔìÒ»´Îº¯ÊýÔËÓõ¥µ÷ÐÔ£¬½â²»µÈʽ¼´¿ÉÅжϣ®

½â´ð ½â£º£¨1£©|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£¬
Ôò$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cos60¡ã=1¡Á1¡Á$\frac{1}{2}$=$\frac{1}{2}$£¬
ÓÉ|$\overrightarrow{a}$+k$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|£¬Á½±ßƽ·½¿ÉµÃ£¬
£¨$\overrightarrow{a}$+k$\overrightarrow{b}$£©2=3£¨$\overrightarrow{a}$-k$\overrightarrow{b}$£©2£¬
${\overrightarrow{a}}^{2}$+2k$\overrightarrow{a}•\overrightarrow{b}$+k2${\overrightarrow{b}}^{2}$=3£¨${\overrightarrow{a}}^{2}$-2k$\overrightarrow{a}•\overrightarrow{b}$+k2${\overrightarrow{b}}^{2}$£©£¬
¼´ÓÐ1+k+k2=3£¨1-k+k2£©£¬
½âµÃk=1£»
£¨2£©ÓÉ${\overrightarrow{a}}^{2}$+2k$\overrightarrow{a}•\overrightarrow{b}$+k2${\overrightarrow{b}}^{2}$=3£¨${\overrightarrow{a}}^{2}$-2k$\overrightarrow{a}•\overrightarrow{b}$+k2${\overrightarrow{b}}^{2}$£©£¬
¿ÉµÃ8k$\overrightarrow{a}•\overrightarrow{b}$=2£¨1+k2£©£¬
f£¨k£©=$\frac{1+{k}^{2}}{4k}$£¬
ÓÉk£¾0£¬¿ÉµÃ1+k2¡Ý2k£¬
¼´ÓÐf£¨k£©¡Ý$\frac{1}{2}$£¬
µ±ÇÒ½öµ±k=1£¬f£¨k£©È¡µÃ×îСֵ$\frac{1}{2}$£®
¼ÙÉè´æÔÚʵÊýx£¬Ê¹µÃf£¨k£©¡Ý1-tx¶ÔÈÎÒâµÄt¡Ê[-1£¬1]ºã³ÉÁ¢£¬
ÔòÓÐ1-tx$¡Ü\frac{1}{2}$¶ÔÈÎÒâµÄt¡Ê[-1£¬1]ºã³ÉÁ¢£®
ÓÉÒ»´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬¿ÉµÃ1+x$¡Ü\frac{1}{2}$ÇÒ1-x$¡Ü\frac{1}{2}$£¬
¼´x¡Ü-$\frac{1}{2}$£¬ÇÒx¡Ý$\frac{1}{2}$£¬¼´ÓÐx¡Ê∅£®
¹Ê²»´æÔÚʵÊýx£¬Ê¹µÃf£¨k£©¡Ý1-tx¶ÔÈÎÒâµÄt¡Ê[-1£¬1]ºã³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÐÔÖÊ£ºÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬Í¬Ê±¿¼²é²»µÈʽºã³ÉÁ¢ÎÊÌâת»¯ÎªÇóº¯ÊýµÄ×îÖµÎÊÌ⣬¹¹ÔìÒ»´Îº¯ÊýÔËÓõ¥µ÷ÐÔÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªx£¾0£¬ÇÒx¡Ù1£¬nΪÕýÕûÊý£¬ÇóÖ¤£º£¨1+xn£©£¨1+x£©n£¾2n+1xn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®É躯Êýf£¨x£©=xlnx£¬Ôòf£¨x£©µÄ¼«Ð¡ÖµÎª£¨¡¡¡¡£©
A£®-eB£®$\frac{1}{e}$C£®e2D£®-$\frac{1}{e}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô¦Á¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬Ôò$\frac{sin2¦Á}{si{n}^{2}¦Á+4co{s}^{2}¦Á}$µÄ×îСֵΪ$-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÏòÁ¿$\overrightarrow{OA}$=£¨3£¬4£©£¬$\overrightarrow{OB}$=£¨-9£¬2£©£¬$\overrightarrow{OC}$=£¨1£¬7£©£®
£¨1£©·Ö±ðÇóÏß¶ÎBC¡¢ACµÄÖеãE¡¢F×ø±ê£»
£¨2£©ÇóAE£¬BFµÄ½»µãMµÄ×ø±ê£»
£¨3£©ÔÚÖ±ÏßABÉÏÇóÒ»µãP£¬Ê¹|$\overrightarrow{AP}$|=$\frac{1}{3}$|$\overrightarrow{AB}$|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÊýÁÐ{an}ǰ¼¸ÏîºÍSn£¬Sn-Sn-2=3£¨-$\frac{1}{2}$£©n-1£¨n¡Ý3£©£¬ÇÒS1=1£¬S2=-$\frac{3}{2}$£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ãan-1-an=anan-1£¨n¡Ý2£©£¬Ôòa1a2+a2a3+¡­+a2014a2015=$\frac{2014}{2015}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô·½³Ìx2+ax+2b=0µÄÒ»¸ö¸ùÔÚ£¨0£¬1£©ÄÚ£¬ÁíÒ»¸ö¸ùÔÚ£¨1£¬2£©ÄÚ£¬Ôò$\frac{b-a}{a-1}$µÄȡֵ·¶Î§ÊÇ£¨-1£¬-$\frac{1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®f£¨x£©ÊǶ¨ÒåÔÚ£¨0£¬+¡Þ£©ÉϵķǸº¿Éµ¼º¯Êý£¬ÇÒÂú×ã$\frac{f£¨x£©-xf'£¨x£©}{{{f^2}£¨x£©}}£¼0$£®¶ÔÈÎÒâÕýÊýa£¬b£¬Èôa£¼b£¬Ôò±ØÓУ¨¡¡¡¡£©
A£®$\frac{a}{f£¨a£©}£¼\frac{b}{f£¨b£©}$B£®$\frac{a}{f£¨b£©}£¼\frac{b}{f£¨a£©}$C£®$\frac{a}{f£¨a£©}£¾\frac{b}{f£¨b£©}$D£®$\frac{a}{f£¨b£©}£¾\frac{b}{f£¨a£©}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸