分析 由已知递推式得${S}_{2n}={S}_{2}-3[(\frac{1}{2})^{2n-1}+(\frac{1}{2})^{2n-3}+…+(\frac{1}{2})^{3}]$=$-2+(\frac{1}{2})^{2n-1}$,${S}_{2n+1}={S}_{1}+3[(\frac{1}{2})^{2n}+(\frac{1}{2})^{2n-2}+…+(\frac{1}{2})^{2}]$=$2-(\frac{1}{2})^{2n}$(n≥1),然后作差分别求出a2n+1和a2n后得答案.
解答 解:当数列含有偶数项时,有:
${S}_{2n}-{S}_{2n-2}=-3•(\frac{1}{2})^{2n-1}$,
${S}_{2n-2}-{S}_{2n-4}=-3•(\frac{1}{2})^{2n-3}$,
…
${S}_{4}-{S}_{2}=-3•(\frac{1}{2})^{3}$,
累加得${S}_{2n}={S}_{2}-3[(\frac{1}{2})^{2n-1}+(\frac{1}{2})^{2n-3}+…+(\frac{1}{2})^{3}]$=$-2+(\frac{1}{2})^{2n-1}$,
当数列含有奇数项时,有:
${S}_{2n+1}-{S}_{2n-1}=3•(\frac{1}{2})^{2n}$,
${S}_{2n-1}-{S}_{2n-3}=3•(\frac{1}{2})^{2n-2}$,
…
${S}_{3}-{S}_{1}=3•(\frac{1}{2})^{2}$.
累加得${S}_{2n+1}={S}_{1}+3[(\frac{1}{2})^{2n}+(\frac{1}{2})^{2n-2}+…+(\frac{1}{2})^{2}]$=$2-(\frac{1}{2})^{2n}$(n≥1),
∴${a}_{2n+1}={S}_{2n+1}-{S}_{2n}=4-3•(\frac{1}{2})^{2n}(n≥1)$,
${a}_{2n}={S}_{2n}-{S}_{2n-1}=-4+3•(\frac{1}{2})^{2n-1}(n≥1)$.
又a1=S1=1,
综上,${a}_{n}=\left\{\begin{array}{l}{1,n=1}\\{4-3•(\frac{1}{2})^{n+1},n是奇数}\\{-4+3•(\frac{1}{2})^{n-1},n是偶数}\end{array}\right.$.
点评 本题考查数列的性质,解题时要注意计算能力的培养,着重考查了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=±\sqrt{2}x$ | B. | $y=±\frac{{\sqrt{3}}}{3}x$ | C. | $y=±\frac{{\sqrt{2}}}{2}x$ | D. | $y=±\sqrt{3}x$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com