精英家教网 > 高中数学 > 题目详情
13.已知△ABC的内角A、B、C 对应的边分别为a,b,c向量$\overrightarrow{m}$=($\frac{a}{sin(A+B)}$,c-2b),$\overrightarrow{n}$=(sin2C,1)满足|$\overrightarrow{m}$+$\overrightarrow{n}$|=|$\overrightarrow{m}$-$\overrightarrow{n}$|
(1)求A大小;
(2)若a=1,求△ABC的周长的取值范围.

分析 (1)运用向量的平方即为模的平方可得$\overrightarrow{m}•\overrightarrow{n}$=0,再由向量的数量积的坐标表示和二倍角公式、余弦定理,即可得到角A;
(2)可令B=$\frac{π}{3}$+α,C=$\frac{π}{3}$-α,-$\frac{π}{3}$<α<$\frac{π}{3}$,运用正弦定理,结合两角和差的正弦公式,化简计算,再由余弦函数的性质,即可得到所求周长的范围.

解答 解:(1)由|$\overrightarrow{m}$+$\overrightarrow{n}$|=|$\overrightarrow{m}$-$\overrightarrow{n}$|可得
($\overrightarrow{m}$+$\overrightarrow{n}$)2=($\overrightarrow{m}$-$\overrightarrow{n}$)2
${\overrightarrow{m}}^{2}$+2$\overrightarrow{m}•\overrightarrow{n}$+$\overrightarrow{n}$2=${\overrightarrow{m}}^{2}$-2$\overrightarrow{m}•\overrightarrow{n}$+$\overrightarrow{n}$2
即有$\overrightarrow{m}•\overrightarrow{n}$=0,
由向量$\overrightarrow{m}$=($\frac{a}{sin(A+B)}$,c-2b),$\overrightarrow{n}$=(sin2C,1),
则$\frac{a}{sin(A+B)}$•sin2C+c-2b=0,
即$\frac{a}{sinC}$•2sinC•cosC+c-2b=0,
2a•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$+c-2b=0,
b2+c2-a2=bc,
即有cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
则A=$\frac{π}{3}$;
(2)B+C=π-A=$\frac{2π}{3}$,
可令B=$\frac{π}{3}$+α,C=$\frac{π}{3}$-α,-$\frac{π}{3}$<α<$\frac{π}{3}$,
由$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=$\frac{1}{sin\frac{π}{3}}$=$\frac{2\sqrt{3}}{3}$,
即有b+c=$\frac{2\sqrt{3}}{3}$(sinB+sinC)
=$\frac{2\sqrt{3}}{3}$(sin($\frac{π}{3}$+α)+sin($\frac{π}{3}$-α))=$\frac{4\sqrt{3}}{3}$sin$\frac{π}{3}$cosα
=2cosα∈(1,2],
则△ABC的周长的取值范围是(2,3].

点评 本题考查正弦定理和余弦定理的运用,同时考查向量的数量积的坐标表示和性质,二倍角公式和两角和差的正弦公式及余弦函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数y=2x3-3x2(  )
A.在x=0处取得极大值0,但无极小值
B.在x=1处取得极小值-1,但无极大值
C.在x=0处取得极大值0,在x=1处取得极小值-1
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面直角坐标系xoy中,曲线C1的方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$,(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ(cosθ-sinθ)+5=0.
(Ⅰ)求曲线C1的普通方程与C2的直角坐标系方程;
(Ⅱ)设P为曲线C1上的任意一点,M为C2上的任意一点,求|PM|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若${({{x^2}-\frac{1}{ax}})^9}$(a∈R)的展开式中x9的系数是-$\frac{21}{2}$,则$\int_0^a{sinxdx}$的值为(  )
A.1-cos2B.2-cos1C.cos2-1D.1+cos2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l1:y=-$\frac{1}{3}$ax-$\frac{1}{3}$,l2:y=-$\frac{2}{a+1}$x-$\frac{1}{a+1}$,若l1∥l2,则实数a的值是(  )
A.a=-3或a=2B.a=-3C.a=-2D.a=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若函数y=Asin(ωx+φ)的图形在y轴右侧的第一个最高点为M(2,3),与x轴在原点右侧的第一个交点为N(6,0),求这个函数的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图是一个由圆、三角形、矩形组成的组合图,现用红黄两种颜色为其涂色,每个图形只涂一色,则三个颜色不全相同的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,一圆柱内挖去一个圆锥,圆锥的顶点是圆柱底面的圆心,圆锥的底面是圆柱的另一个底面.圆柱的母线长为6,底面半径为2,求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$\frac{1-tanA}{1+tanA}$=4+$\sqrt{5}$,则tan(45°+A)=$\frac{4-\sqrt{5}}{11}$.

查看答案和解析>>

同步练习册答案