精英家教网 > 高中数学 > 题目详情
以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:
①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“?b∈R,?a∈D,f(a)=b”;
②函数f(x)∈B的充要条件是f(x)有最大值和最小值;
③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.
④若函数f(x)=aln(x+2)+
x
x2+1
(x>-2,a∈R)有最大值,则f(x)∈B.
其中的真命题有
 
.(写出所有真命题的序号)
考点:命题的真假判断与应用,充要条件,全称命题,特称命题,函数的值域
专题:新定义,极限思想,函数的性质及应用,不等式的解法及应用,简易逻辑
分析:根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.
解答: 解:(1)对于命题①,若对任意的b∈R,都?a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都?a∈D使得f(a)=b,故①是真命题;
   (2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[-M,M].
∴-M≤f(x)≤M.例如:函数f(x)满足-2<f(x)<5,则有-5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;
   (3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(-∞,+∞),并且存在一个正数M,使得-M≤g(x)≤M.故f(x)+g(x)∈(-∞,+∞).
则f(x)+g(x)∉B,故③是真命题;
   (4)对于命题④,∵-
1
2
x
x2+1
1
2

当a>0或a<0时,alnx∈(-∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=
x
x2+1
,f(x)∈B,故④是真命题.
故答案为①③④.
点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为
1
2
,在D上的概率为
1
3
;对落点在B上的来球,小明回球的落点在C上的概率为
1
5
,在D上的概率为
3
5
.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:
(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x03+3x0)成立,试比较ea-1与ae-1的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2
x
•log 
2
(2x)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:当a、b、c为正数时,(a+b+c)(
1
a
+
1
b
+
1
c
)≥9.
(2)已知x>0,y>0,证明不等式:(x2+y2 
1
2
>(x3+y3 
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆E:x2+
y2
b2
=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
OA
=(1,-3),|
OA
|=|
OB
|,
OA
OB
=0,则|
AB
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a,b,c满足a+b+c=0,a2+b2+c2=1,则a的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如下样本数据:
x345678
y4.02.5-0.50.5-2.0-3.0
得到回归方程为
y
=bx+a,则(  )
A、a>0,b<0
B、a>0,b>0
C、a<0,b<0
D、a<0,b>0

查看答案和解析>>

同步练习册答案